CDNM: Clustering-Based Data Normalization Method For Automated Vulnerability Detection

Author:

Wu Tongshuai12,Chen Liwei12,Du Gewangzi12,Zhu Chenguang12,Cui Ningning12,Shi Gang12

Affiliation:

1. Institute of Information Engineering, Chinese Academy of Sciences , Beijing , China

2. School of Cyber Security, University of Chinese Academy of Sciences , Beijing , China

Abstract

Abstract The key to deep learning vulnerability detection framework is pre-processing source code and learning vulnerability features. Traditional source code representation techniques take a complete normalization to user-defined symbols but ignore the semantic information associated with vulnerabilities. The current mainstream vulnerability feature learning model is Recurrent Neural Network (RNN), whose time-series structure determines its insufficient remote information acquisition capability. This paper proposes a new vulnerability detection framework to solve the above problems. We propose a new data normalization method in the source code pre-processing phase. The user-defined symbols are clustered using the unsupervised clustering algorithm K-means. The normalized classification is performed according to the clustering results, which preserves the primary semantic information in the source code and ensures the smoothness of the sample data. In the feature extraction stage, we input the source code after performing text representation into Bidirectional Encoder Representations for Transformers (BERT) for feature automation learning, which enhances semantic information extraction and remote information acquisition. Experimental results show that the vulnerability detection precision of this method is 18.3% higher than that of the current mainstream vulnerability detection framework in the real-world data collected by ourselves. Further, our method improves the precision of the state-of-the-art method by 4.2%.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association CAS

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference69 articles.

1. Spain: security patch analysis for binaries towards understanding the pain and pills;Xu,2017

2. Bingo: Cross-architecture cross-os binary search;Chandramohan,2016

3. Cerebro: context-aware adaptive fuzzing for effective vulnerability detection;Li,2019

4. Hawkeye: Towards a desired directed grey-box fuzzer;Chen,2018

5. Steelix: program-state based binary fuzzing;Li,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3