Subgraph Reliability of Alternating Group Graph With Uniform and Nonuniform Vertex Fault-Free Probabilities

Author:

Huang Yanze12,Lin Limei1,Xu Li1

Affiliation:

1. College of Mathematics and Informatics, Key Laboratory of Network Security and Cryptology, Center for Applied Mathematics of Fujian Province, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China

2. School of Mathematics and Physics, Institute of Machine Learning and Intelligent Sciences, Fujian University of Technology, Fuzhou, Fujian, 350118, P.R. China

Abstract

Abstract As the size of a multiprocessor system grows, the probability that faults occur in this system increases. One measure of the reliability of a multiprocessor system is the probability that a fault-free subsystem of a certain size still exists with the presence of individual faults. In this paper, we use the probabilistic fault model to establish the subgraph reliability for $AG_n$, the $n$-dimensional alternating group graph. More precisely, we first analyze the probability $R_n^{n-1}(p)$ that at least one subgraph with dimension $n-1$ is fault-free in $AG_n$, when given a uniform probability of a single vertex being fault-free. Since subgraphs of $AG_n$ intersect in rather complicated manners, we resort to the principle of inclusion–exclusion by considering intersections of up to five subgraphs and obtain an upper bound of the probability. Then we consider the probabilistic fault model when the probability of a single vertex being fault-free is nonuniform, and we show that the upper bound under these two models is very close to the lower bound obtained in a previous result, and it is better than the upper bound deduced from that of the arrangement graph, which means that the upper bound we obtained is very tight.

Funder

National Natural Science Foundation of China

Fok Ying Tung Education Foundation

Fujian University of Technology

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3