A Verifier-Based Password-Authenticated Key Exchange Using Tamper-Proof Hardware

Author:

Shin Ji Sun1,Jo Minjae1,Hwang Jung Yeon2,Lee Jaehwan3

Affiliation:

1. Department of Computer and Information Security, Sejong University, Seoul 05006, Korea

2. Department of Mathematics, Sungshin Women’s University, Seoul 02844, Korea

3. School of Electronics and Information Engineering, Korea Aerospace University, Goyang-city 10540, Korea

Abstract

Abstract Password-based authenticated key exchange (PAKE) allows two parties to compute a common secret key. PAKE offers the advantage of allowing two parties to pre-share only a password. However, when it is executed in a client–server environment, server corruption can expose the clients’ passwords. To be resilient against server compromises, verifier-based authenticated key exchange (VPAKE) is proposed, as an augmented version of PAKE. Thus far, there are two known major VPAKE constructions formally proven secure. However, both involve strong assumptions, such as random oracles. In this paper, we propose a simple and efficient VPAKE using tamper-proof hardware without random oracles to support resilient infrastructures. In particular, we transform Katz–Vaikuntanathan one-round PAKE into two-round VPAKE so as to instill resilience to server compromises. We provide a formal definition of VPAKE using tamper-proof hardware and security proof without random oracles. Finally, we provide a performance analysis and comparisons to previous VPAKE and PAKE protocols. Our transformation supports an efficient VPAKE protocol with six group element communications when the underlying Katz–Vaikuntanathan PAKE is instantiated by Cramer–Shoup ciphertext following the proposal by Benhamouda et al.

Funder

Ministry of Science and ICT

Ministry of Education

Institute for Information and Communications Technology Promotion

Korea Government

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference44 articles.

1. Simple password-based encrypted key exchange protocols;Abdalla,2005

2. Comparison between RSA hardware and software implementation for WSNS security schemes;Alkalbani,2010

3. Authenticated key exchange secure against dictionary attacks;Bellare,2000

4. Encrypted key exchange: password-based protocols secure against dictionary attacks;Bellovin,1992

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3