Dynamic-SoS: An Approach for the Simulation of Systems-of-Systems Dynamic Architectures

Author:

Manzano Wallace1ORCID,Graciano Neto Valdemar Vicente2,Nakagawa Elisa Yumi1

Affiliation:

1. University of São Paulo, Av. Trabalhador Sancarlense, 400, 13566-590 São Carlos, Brazil

2. Federal University of Goiás, Alameda das Palmeiras, 74690-900 Goiânia, Brazil

Abstract

Abstract Systems-of-Systems (SoS) combine heterogeneous, independent systems to offer complex functionalities for highly dynamic smart applications. Besides their dynamic architecture with continuous changes at runtime, SoS should be reliable and work without interrupting their operation and with no failures that could cause accidents or losses. SoS architectural design should facilitate the prediction of the impact of architectural changes and potential failures due to SoS behavior. However, existing approaches do not support such evaluation. Hence, these systems have been usually built without a proper evaluation of their architecture. This article presents Dynamic-SoS, an approach to predict/anticipate at design time the SoS architectural behavior at runtime to evaluate whether the SoS can sustain their operation. The main contributions of this approach comprise: (i) characterization of the dynamic architecture changes via a set of well-defined operators; (ii) a strategy to automatically include a reconfiguration controller for SoS simulation; and (iii) a means to evaluate architectural configurations that an SoS could assume at runtime, assessing their impact on the viability of the SoS operation. Results of our case study reveal Dynamic-SoS is a promising approach that could contribute to the quality of SoS by enabling prior assessment of its dynamic architecture.

Funder

São Paulo Research Foundation

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference47 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3