Balancing Power And Performance In HPC Clouds

Author:

Chen Lixia1,Li Jian1,Ma Ruhui1,Guan Haibing1,Jacobsen Hans-Arno2

Affiliation:

1. Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University,Shanghai 200240, China

2. Middleware Systems Research Group, University of Toronto, Toronto M5S2E4, Canada

Abstract

AbstractWith energy consumption in high-performance computing clouds growing rapidly, energy saving has become an important topic. Virtualization provides opportunities to save energy by enabling one physical machine (PM) to host multiple virtual machines (VMs). Dynamic voltage and frequency scaling (DVFS) is another technology to reduce energy consumption. However, in heterogeneous cloud environments where DVFS may be applied at the chip level or the core level, it is a great challenge to combine these two technologies efficiently. On per-core DVFS servers, cloud managers should carefully determine VM placements to minimize performance interference. On full-chip DVFS servers, cloud managers further face the choice of whether to combine VMs with different characteristics to reduce performance interference or to combine VMs with similar characteristics to take better advantage of DVFS. This paper presents a novel mechanism combining a VM placement algorithm and a frequency scaling method. We formulate this VM placement problem as an integer programming (IP) to find appropriate placement configurations, and we utilize support vector machines to select suitable frequencies. We conduct detailed experiments and simulations, showing that our scheme effectively reduces energy consumption with modest impact on performance. Particularly, the total energy delay product is reduced by up to 60%.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference80 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy-efficient DAG scheduling with DVFS for cloud data centers;The Journal of Supercomputing;2024-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3