CR Loss: Improving Biometric Using ClassRoom Learning Approach

Author:

Prasad Shitala1,Chai Tingting2,Li Jiahui2,Zhang Zhaoxin2

Affiliation:

1. Institute for Infocomm Research, A*Star , Singapore

2. Harbin Institute of Technology , Harbin, China

Abstract

Abstract One of the important factors in deep feature learning is their loss function design which highly influences the network performance. In this paper, we proposed a classroom (CR) learning approach along with arcface loss for contactless palmprint recognition to obtain high-level discriminative features without any extra load made to the network architecture. CR loss allows the network to learn the best possible feature representations for palmprint images. To validate our concept, we performed extensive experimental evaluations on various popular benchmark palmprint databases where our methods outperform the state-of-the-art methods. We also introduced a challenging contactless palmprint database called Harbin Institute of Technology-Network & Information Security Research Center contactless palmprint database version 1.0 (HIT-NIST-V1), as a new contribution to this domain. The result proves that the proposed CR loss consistently outperforms the SOTA methods for all the considered databases and especially for HIT-NIST-V1.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference42 articles.

1. Biometrics in the era of covid-19: Challenges and opportunities;Gomez-Barrero

2. Boosting palmprint identification with gender information using DeepNet;Chai;Future Gener. Comp. Syst.

3. Cross-domain palmprint recognition via regularized adversarial domain adaptive hashing;Du;IEEE TCSVT

4. Arcface: Additive angular margin loss for deep face recognition;Deng;CVPR

5. The origins and prevalence of texture bias in convolutional neural networks;Hermann;Advances in Neural Information Processing Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Joint-YODNet: A Light-Weight Object Detector for UAVs to Achieve Above 100fps;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3