Deriving Specifications of Control Programs for Cyber Physical Systems

Author:

Burns Alan1ORCID,Hayes Ian J2ORCID,Jones Cliff B3ORCID

Affiliation:

1. Department of Computer Science, University of York, YO10 5GH, UK

2. School of Information Technology and Electrical Engineering, The University of Queensland, 4072, Australia

3. School of Computing Science, Newcastle University, NE1 7RU, UK

Abstract

Abstract Cyber physical systems (CPS) exist in a physical environment and comprise both physical components and a control program. Physical components are inherently liable to failure and yet an overall CPS is required to operate safely, reliably and cost effectively. This paper proposes a framework for deriving the specification of the software control component of a CPS from an understanding of the behaviour required of the overall system in its physical environment. The two key elements of this framework are (i) an extension to the use of rely/guarantee conditions to allow specifications to be obtained systematically from requirements (as expressed in terms of the required behaviour in the environment) and nested assumptions (about the physical components of the CPS); and (ii) the use of time bands to record the temporal properties required of the CPS at a number of different granularities. The key contribution is in combining these ideas; using time bands overcomes a significant drawback in earlier work. The paper also addresses the means by which the reliability of a CPS can be addressed by challenging each rely condition in the derived specification and, where appropriate, improve robustness and/or define weaker guarantees that can be delivered with respect to the corresponding weaker rely conditions.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clarifying Assumptions;Lecture Notes in Computer Science;2024

2. Specifying Fault-Tolerant Mixed-Criticality Scheduling;Lecture Notes in Computer Science;2024

3. SmartAudits: Applying Timebands to a Medical Device;Lecture Notes in Computer Science;2024

4. Utilising Assumptions to Determine the WCET of Multi-component Classification Systems;Lecture Notes in Computer Science;2024

5. Extending rely-guarantee thinking to handle real-time scheduling;Formal Methods in System Design;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3