Byte2vec: Malware Representation and Feature Selection for Android

Author:

Yousefi-Azar Mahmood1,Hamey Len1,Varadharajan Vijay2,Chen Shiping3

Affiliation:

1. Department of Computing, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia

2. Faculty of Engineering and Built Environment, University of Newcastle

3. Commonwealth Scientific and Industrial Research Organisation, CSIRO, Data61

Abstract

AbstractMalware detection based on static features and without code disassembling is a challenging path of research. Obfuscation makes the static analysis of malware even more challenging. This paper extends static malware detection beyond byte level $n$-grams and detecting important strings. We propose a model (Byte2vec) with the capabilities of both binary file feature representation and feature selection for malware detection. Byte2vec embeds the semantic similarity of byte level codes into a feature vector (byte vector) and also into a context vector. The learned feature vectors of Byte2vec, using skip-gram with negative-sampling topology, are combined with byte-level term-frequency (tf) for malware detection. We also show that the distance between a feature vector and its corresponding context vector provides a useful measure to rank features. The top ranked features are successfully used for malware detection. We show that this feature selection algorithm is an unsupervised version of mutual information (MI). We test the proposed scheme on four freely available Android malware datasets including one obfuscated malware dataset. The model is trained only on clean APKs. The results show that the model outperforms MI in a low-dimensional feature space and is competitive with MI and other state-of-the-art models in higher dimensions. In particular, our tests show very promising results on a wide range of obfuscated malware with a false negative rate of only 0.3% and a false positive rate of 2.0%. The detection results on obfuscated malware show the advantage of the unsupervised feature selection algorithm compared with the MI-based method.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference36 articles.

1. Cloud-based malware detection game for mobile devices with offloading;Xiao;IEEE Trans. Mobile Comput.,2017

2. Mamadroid: Detecting android malware by building markov chains of behavioral models;Mariconti,2017

3. Learning and classification of malware behavior;Rieck,2008

4. Learning to detect and classify malicious executables in the wild;Kolter;J. Mach. Learn. Res.,2006

5. An investigation of byte n-gram features for malware classification;Raff;J. Computer Virol. Hacking Tech.,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3