Affiliation:
1. Department of Computer Science and Engineering, VNIT, Nagpur
Abstract
Abstract
Short text or sentence similarity is crucial in various natural language processing activities. Traditional measures for sentence similarity consider word order, semantic features and role annotations of text to derive the similarity. These measures do not suit short texts or sentences with negation. Hence, this paper proposes an approach to determine the semantic similarity of sentences and also presents an algorithm to handle negation. In sentence similarity, word pair similarity plays a significant role. Hence, this paper also discusses the similarity between word pairs. Existing semantic similarity measures do not handle antonyms accurately. Hence, this paper proposes an algorithm to handle antonyms. This paper also presents an antonym dataset with 111-word pairs and corresponding expert ratings. The existing semantic similarity measures are tested on the dataset. The results of the correlation proved that the expert ratings are in order with the correlation obtained from the semantic similarity measures. The sentence similarity is handled by proposing two algorithms. The first algorithm deals with the typical sentences, and the second algorithm deals with contradiction in the sentences. SICK dataset, which has sentences with negation, is considered for handling the sentence similarity. The algorithm helped in improving the results of sentence similarity.
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献