Linearly Homomorphic Signatures from Lattices

Author:

Lin Cheng-Jun12,Xue Rui12,Yang Shao-Jun3,Huang Xinyi3,Li Shimin12

Affiliation:

1. State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

2. School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China

3. Fujian Provincial Key Laboratory of Network Security and Cryptology, School of Mathematics and Informatics, Fujian Normal University, Fuzhou, China

Abstract

AbstractLinearly homomorphic signatures (LHSs) allow any entity to linearly combine a set of signatures and to provide authentication service for the corresponding (combined) data. The public key of the current known LHSs from lattices in the standard model requires $O(l)$ matrices and $O(k)$ vectors, where $l$ is the length of file identifier and $k$ is the maximum data set size that linear functions support. In this paper, we construct two lattice-based LHS schemes with provable security in the standard model and both schemes can authenticate vectors defined over finite field. First, we present a basic LHS scheme satisfying selective security, based on the full-rank difference hash functions. Second, we modify the chameleon hash function constructed by (Cash, D., Hofheinz, D., Kiltz, E. and Peikert, C. (2010) Bonsai Trees, or How to Delegate a Lattice Basis. In Proc. EUROCRYPT 10, Monaco/French Riviera, May 30 to June 3, pp. 523–552. Springer, Berlin) to construct a linearly homomorphic chameleon hash function (LHCHF), which can be applied to all transformations from selectively secure LHS scheme that authenticates vectors defined over finite field $\mathbb{F}_{p}$ ($p=poly(n)$) to fully secure one, except for a new one that authenticates vectors defined over a small field. Starting from LHCFH and the basic scheme as above, we obtain a fully secure LHS scheme. Both schemes can be used to sign multiple files and have relatively short public keys consisting of $O(1)$ matrices and $O(k)$ vectors.

Funder

National Natural Science Foundation of China

National Key R D Program of China

Natural Science Foundation of Fujian Province, China

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference41 articles.

1. New directions in cryptography;Diffie;IEEE Trans. Information Theory,1976

2. Network information flow;Ahlswede;IEEE Trans. Information Theory,2000

3. Linear network coding;Li;IEEE Trans Information Theory,2003

4. Signing a Linear Subspace: Signature Schemes for Network Coding;Boneh,2009

5. Computing on Authenticated Data;Ahn,2012

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3