Pipelined Decision Trees for Online Traffic Classification on FPGAs

Author:

Erdem Oğuzhan1,Soylu Tuncay2,Carus Aydın3

Affiliation:

1. Electrical and Electronics Engineering, Trakya University , Edirne 22030 , Turkey

2. Occupational Health and Safety, University of Health Sciences , Istanbul 34668 , Turkey

3. Computer Engineering, Trakya University , Edirne 22030 , Turkey

Abstract

AbstractDecision tree (DT)-based machine learning (ML) algorithms are one of the preferred solutions for real-time internet traffic classification in terms of their easy implementation on hardware. However, the rapid increase in today’s newly developed applications and the resulting diversity in internet traffic greatly increases the size of DTs. Therefore, the tree-based hardware classifiers cannot keep up with this growth in terms of resource usage and classification speed. To alleviate the problem, we propose to group application classes by certain rules and create an individual small DT per each group. In this article, a pipelined organization of multiple DT data structures, called pipelined decision trees, is proposed as a scalable solution to tree-based traffic classification. We also propose two distinct algorithms, namely confusion matrix-based class aggregation and leaf count-based class aggregation algorithms, to set group creation rules that allows traffic classification on pipelined smaller DTs in a hierarchical order. We further designed an hardware engine on field programmable gate arrays, which can search those pipelined trees within a single clock cycle by transforming them into bit vectors and implementing multiple range comparisons in parallel. Our architecture with 12 classes can run in 928.88 giga bit per second and achieve 96.04% accuracy.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference58 articles.

1. Simple CART Based Real-time Traffic Classification Engine on FPGAs;Soylu,2017

2. Is P2P Dying or Just Hiding;Karagiannis,2004

3. BitProb: probabilistic bit signatures for accurate application identification;Hubballi;IEEE Trans. Netw. Service Manage.,2020

4. KeyClass: efficient keyword matching for network traffic classification;Hubballi;Computer Commun.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3