Review-Based Recommender Systems: A Proposed Rating Prediction Scheme Using Word Embedding Representation of Reviews

Author:

Hasanzadeh S1,Fakhrahmad S M1,Taheri M1

Affiliation:

1. Department of Computer Science and Engineering, School of Electrical and Computer Engineering, Shiraz University, Shiraz 71348-51154, Iran

Abstract

Abstract Recommender systems nowadays play an important role in providing helpful information for users, especially in ecommerce applications. Many of the proposed models use rating histories of the users in order to predict unknown ratings. Recently, users’ reviews as a valuable source of knowledge have attracted the attention of researchers in this field and a new category denoted as review-based recommender systems has emerged. In this study, we make use of the information included in user reviews as well as available rating scores to develop a review-based rating prediction system. The proposed scheme attempts to handle the uncertainty problem of the rating histories, by fuzzifying the given ratings. Another advantage of the proposed system is the use of a word embedding representation model for textual reviews, instead of using traditional models such as binary bag of words and TFIDF 1 vector space. It also makes use of the helpfulness voting scores, in order to prune data and achieve better results. The effectiveness of the rating prediction scheme as well as the final recommender system was evaluated against the Amazon dataset. Experimental results revealed that the proposed recommender system outperforms its counterparts and can be used as a suitable tool in ecommerce environments.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference36 articles.

1. A review of content and collaborative filtering approaches on MovieLens data;Kadam;Int. Res. J. Eng. Technol.,2016

2. Comparing content based and collaborative filtering in recommender systems;Aggarwal;Int. J. New Technol. Res.,2017

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3