Multispectral Palm Print and Palm Vein Acquisition Platform and Recognition Method Based on Convolutional Neural Network

Author:

Wang Lei1ORCID,Zhang Qiang12,Qian Qing1,Wang Jishuai1,Pan Yujun1,Yang Renbing1,Cheng Wenbo1

Affiliation:

1. CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China

2. Academy for Engineering & Technology, Fudan University, Shanghai 200433, P. R. China

Abstract

Abstract Biometrics recognition takes advantage of feature extraction and pattern recognition to analyze the physical and behavioral characteristics of biological individuals to achieve the purpose of individual identification. As a typical biometric technology, palm print and palm vein have the characteristics of high recognition rate, stable features, easy location and good image quality, which have attracted the attention of researchers. This paper designs and develops a multispectral palm print and palm vein acquisition platform, which can quickly acquire palm spectrum and palm vein multispectral images with seven different wavelengths. We propose a multispectral palm print palmar vein recognition framework, and feature-level image fusion is performed after extracting features of palm print palmar vein images at different wavelengths. Through the multispectral palm print palm vein image fusion experiment, a more feasible multispectral palm print and palm vein image fusion scheme is proposed. Based on the results of image fusion, we further propose an improved convolutional neural network (CNN) for model training to achieve identity recognition based on multispectral palm print palm vein images. Finally, the effects of different CNN network structures and learning rates on the recognition results were analyzed and compared experimentally.

Funder

National Key Research and Development Plan Project of China

Scientific Research Instrument Developing Project of the Chinese Academy of Sciences

Institute-City Cooperation Project of Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3