Affiliation:
1. CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
2. Academy for Engineering & Technology, Fudan University, Shanghai 200433, P. R. China
Abstract
Abstract
Biometrics recognition takes advantage of feature extraction and pattern recognition to analyze the physical and behavioral characteristics of biological individuals to achieve the purpose of individual identification. As a typical biometric technology, palm print and palm vein have the characteristics of high recognition rate, stable features, easy location and good image quality, which have attracted the attention of researchers. This paper designs and develops a multispectral palm print and palm vein acquisition platform, which can quickly acquire palm spectrum and palm vein multispectral images with seven different wavelengths. We propose a multispectral palm print palmar vein recognition framework, and feature-level image fusion is performed after extracting features of palm print palmar vein images at different wavelengths. Through the multispectral palm print palm vein image fusion experiment, a more feasible multispectral palm print and palm vein image fusion scheme is proposed. Based on the results of image fusion, we further propose an improved convolutional neural network (CNN) for model training to achieve identity recognition based on multispectral palm print palm vein images. Finally, the effects of different CNN network structures and learning rates on the recognition results were analyzed and compared experimentally.
Funder
National Key Research and Development Plan Project of China
Scientific Research Instrument Developing Project of the Chinese Academy of Sciences
Institute-City Cooperation Project of Chinese Academy of Sciences
Publisher
Oxford University Press (OUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献