An Evaluation On The Entropy Supplying Capability Of Smartphone Sensors

Author:

Zhang Dinghua1,Wu Shihao1,Li Yang1,Pan Quan1

Affiliation:

1. School of Automation, Northwestern Polytechnical University , China Xi’an, 710072, China

Abstract

Abstract Random numbers are very important for the security of computer system. However, generating qualified random numbers is difficult because we cannot always successfully introduce dedicated random number hardware into computer system. Although most operating systems provide random number generation capabilities, the effective entropy supply is still dependent on the hardware platform including memory and clocks etc. However, obtaining hardware events such as clocks requires system privileges, which is not conducive for entropy estimation at the application layer. In contrast, data related to the sensor hardware can be extracted directly at the application layer. These sensor data contain some randomness and may be used as a noise source. In this way, applications can use these sensors to implement their own proprietary random number generators. Before taking these sensors as the noise source, it is necessary to fully evaluate their entropy supply capability. In this paper, 300 Android smartphones and 30 iOS smartphones are selected as samples and their sensor entropy supply capabilities are comprehensively evaluated. Based on the entropy evaluation results, we give some suggestions on how to generate random numbers using these sensor data. We first design a framework for evaluating the entropy supply capability for smartphone sensors, based on the min-entropy estimation method proposed in NIST SP 800-90B. According to this framework, we simulate stationary and mobile working states for each smartphone, and collect sufficient sensor data as the min-entropy estimation dataset. The min-entropy estimation results show that in the stationary working state, each ACCELEROMETER sensor data collection can obtain at least 1.5 bits of entropy in Android, while each GYROSCOPE sensor data collection can obtain at least 20 bits of entropy in iOS. In the mobile working state, each ACCELEROMETER sensor data collection can obtain at least 1.9 bits of entropy, while each GYROSCOPE sensor data acquisition in iOS system can obtain at least 27 bits of entropy. This means that we can still get a stable entropy output from the sensor even when the smartphone is in stationary working state. Statistical analysis of the data using cross correlation methods suggests it is hard for an attacker to guess or predict the random numbers generated by a smartphone through another smartphone put in the similar external environment.

Funder

Defense Industrial Technology Development Program

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3