Server-aided Revocable IBE with Identity Reuse

Author:

Ma Xuecheng12,Lin Dongdai12

Affiliation:

1. State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

2. School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Abstract Efficient key revocation in Identity-based Encryption (IBE) has been a both fundamental and critical problem when deploying an IBE system in practice. Boneh and Franklin proposed the first revocable IBE (RIBE) scheme where the size of key updates is linear in the number of users. Then, Boldyreva, Goyal and Kumar proposed the first scalable RIBE by using the tree-based approach where the size of key updates is $O(r\log (N/r))$ and the size of every user’s long-term secret key is $O(\log N)$ with $N$ being the number of users and $r$ the number of revoked users. Recently, Qin et al. presented the notion of server-aided RIBE where the size of every user’s long-term secret key is $O(1),$ and users do not need to communicate with Key Generator Center (KGC) during every key updates. However, users must change their identities once their secret keys are revoked as they cannot decrypt ciphertexts by using their revoked secret keys. To address the above problem, we formalize the notion of RIBE with identity reuse. In our system model, users can obtain a new secret key called the reuse secret key from KGC when their secret keys are revoked. The decryption key can be derived from the reuse secret key and new key updates while it cannot be derived from the revoked secret key and the new key updates. We present a concrete construction that is secure against adaptive-ID chosen plaintext attacks and decryption key exposure attacks under the $\mathsf{ADDH}1$ and $\mathsf{DDH}2$ assumptions in the standard model. Furthermore, we extend it to server-aided RIBE scheme with identity reuse property that is more suitable for lightweight devices.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference45 articles.

1. Identity-based cryptosystems and signature schemes;Shamir,1984

2. Identity-based encryption from the weil pairing;Boneh,2001

3. Random oracles are practical: a paradigm for designing efficient protocols;Bellare,1993

4. Efficient selective-id secure identity-based encryption without random oracles;Boneh,2004

5. Secure identity based encryption without random oracles;Boneh,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3