Practical Implementation of Encoding Range Top-2 Queries

Author:

Park Wooyoung1,Jo Seungbum2,Rao Satti Srinivasa3

Affiliation:

1. Dep. of Computer Science and Engineering, Seoul National University , Seoul, South Korea

2. The Division of Computer Convergence, Chungnam National University , Daejeon, South Korea

3. Dept. of Computer Science, Norwegian University of Science and Technology , Trondheim, Norway

Abstract

Abstract We design a practical variant of an encoding for range Top-2 query (RT2Q) and evaluate its performance. Given an array $A[1,n]$ of $n$ elements from a total order, the range Top-2 encoding problem is to construct a data structure that answers ${\textsf{RT2Q}}{}$, which returns the positions of the first and second largest elements within a given range of $A$, without accessing the array $A$ at query time. We design the following two implementations: (i) an implementation based on an alternative representation of Davoodi et al.’s [Phil. Trans. Royal Soc. A, 2016] data structure, which supports queries efficiently. Experimental results show that our implementation is efficient in practice and gives improved time-space trade-offs compared with the indexing data structures (which keep the original array $A$ as part of the data structure) for range maximum queries. (ii) Another implementation based on Jo et al.’s ${\textsf{RT2Q}}{}$ encoding on $2 \times n$ array [CPM, 2016], which can be constructed in $O(n)$ time. We compare our encoding with Gawrychowski and Nicholson’s optimal encoding [ICALP, 2015] and show that in most cases, our encoding shows faster construction time while using a competitive space in practice.

Funder

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference26 articles.

1. Practical range minimum queries revisited;Baumstark;SEA,2017

2. Improved range minimum queries;Ferrada;J. Discrete Algorithms

3. Space-efficient preprocessing schemes for range minimum queries on static arrays;Fischer;SIAM J. Comput

4. Encoding data structures;Raman;WALCOM,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3