Pattern Matching Model for Recognition of Stone Inscription Characters

Author:

Devi K Durga1ORCID,Maheswari P Uma2,Polasi Phani Kumar1,Preetha R1,Vidhyalakshmi M1

Affiliation:

1. ECE, SRMIST, Ramapuram, Chennai, Tamil Nadu 600089, India

2. CSE, College of Engineering Guindy, Anna University Chennai, Chennai, Tamil Nadu 600025, India

Abstract

Abstract As there are countless significant works done for handwritten character recognition, very meager effort has been reported for inscription characters especially for Tamil stone inscriptions. The real challenge faced in handling stone inscription is dataset collection and foreground and background discrimination. Till present days, the archeological department follows traditional way of capturing, preserving and deciphering stone inscriptions which is manual, more time consuming and need expert assistance. Hence digitized recognition is essential and efficient pattern matching algorithm is needed to be developed to deal with variations in shape and size of complex structured characters present in Tamil stone inscriptions. In this paper, an automated character recognition by pattern matching approach is developed, where character features were extracted by using pattern matching algorithm that helps achieving good recognition rate. Recognition of ancient Tamil stone inscriptions characters and finding their corresponding contemporary Tamil character is done by Image-based Character Pattern Identification (ICPI) system. Modified Speeded Up Robust Feature with Bag of Grapheme (MSURF-BoG) algorithm is implemented to detect the strongest key points from the input character with different orientations. These key point features were created for training the image as a model called Bag of Grapheme (BoG) with code word creation. Hence unsupervised key point features were extracted and pattern matching is performed. 11th century Tamil stone inscriptions were taken as samples which has 7 vowels and 17 consonants, totally 24 characters were used. Here samples with different orientation from each 24 character were used for training the system. The proposed system is evaluated by recognition accuracy which is reported for character wise at the maximum of 96%.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference23 articles.

1. A survey on Tamil handwritten character recognition using OCR techniques;Raj;Computer Science & Information Technology,2012

2. Optical Character Recognition Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3