Mean Error Rate Weighted Online Boosting Method

Author:

Honnikoll Nagaraj1,Baidari Ishwar1

Affiliation:

1. Department of Computer Science, Karnatak University, Karnataka 580003, India

Abstract

Abstract Boosting is a generally known technique to convert a group of weak learners into a powerful ensemble. To reach this desired objective successfully, the modules are trained with distinct data samples and the hypotheses are combined in order to achieve an optimal prediction. To make use of boosting technique in online condition is a new approach. It motivates to meet the requirements due to its success in offline conditions. This work presents new online boosting method. We make use of mean error rate of individual base learners to achieve effective weight distribution of the instances to closely match the behavior of OzaBoost. Experimental results show that, in most of the situations, the proposed method achieves better accuracies, outperforming the other state-of-art methods.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mondrian forest for data stream classification under memory constraints;Data Mining and Knowledge Discovery;2023-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3