Detecting Urban Anomalies Using Factor Analysis and One Class Support Vector Machine

Author:

Lu Cong1,Huang Jianbin1,Huang Longji1

Affiliation:

1. Xidian University, Xian, China

Abstract

Abstract The detection of anomalies in spatiotemporal traffic data is not only critical for intelligent transportation systems and public safety but also very challenging. Anomalies in traffic data often exhibit complex forms in two aspects, (i) spatiotemporal complexity (i.e. we need to associate individual locations and time intervals formulating a panoramic view of an anomaly) and (ii) multi-source complexity (i.e. we need an algorithm that can model the anomaly degree of the multiple data sources of different densities, distributions and scales). To tackle these challenges, we proposed a three-step method that uses factor analysis to extract features, then uses the goodness-of-fit test to obtain the anomaly score of a single data point and then uses one class support vector machine to synthesize the anomaly score. Finally, we conduct extensive experiments on real-world trip data include taxi and bike data. And these extensive experiments demonstrate the effectiveness of our proposed approach.

Funder

National Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference24 articles.

1. Detection and classification of traffic anomalies using microscopic traffic variables;Barria;IEEE Trans. Intell. Transport. Syst.,2011

2. Smarter outlier detection and deeper understanding of large-scale taxi trip records: a case study of NYC;Zhang;Proc. ACM SIGKDD Int. Workshop on Urban Computing,2012

3. Crowd sensing of traffic anomalies based on human mobility and social media;Pan;Proc. 21st ACM SIGSPATIAL Int. Conf. Advances in Geographic Information Systems,2013

4. Using data from the web to predict public transport arrivals under special events scenarios;Pereira;J. Intell. Transport. Syst.,2015

5. An early event detection technique with bus GPS data;Aoki;Proc. 25th ACM SIGSPATIAL Int. Conf. Advances in Geographic Information Systems,2017

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3