Work-Efficient Parallel Non-Maximum Suppression Kernels

Author:

Oro David12,Fernández Carles2,Martorell Xavier1,Hernando Javier1

Affiliation:

1. Universitat Politècnica de Catalunya, C. Jordi Girona, 1-3, 08034, Barcelona, Spain

2. Herta Security, C. Pau Claris, 165 4B, 08037, Barcelona, Spain

Abstract

Abstract In the context of object detection, sliding-window classifiers and single-shot convolutional neural network (CNN) meta-architectures typically yield multiple overlapping candidate windows with similar high scores around the true location of a particular object. Non-maximum suppression (NMS) is the process of selecting a single representative candidate within this cluster of detections, so as to obtain a unique detection per object appearing on a given picture. In this paper, we present a highly scalable NMS algorithm for embedded graphics processing unit (GPU) architectures that is designed from scratch to handle workloads featuring thousands of simultaneous detections on a given picture. Our kernels are directly applicable to other sequential NMS algorithms such as FeatureNMS, Soft-NMS or AdaptiveNMS that share the inner workings of the classic greedy NMS method. The obtained performance results show that our parallel NMS algorithm is capable of clustering 1024 simultaneous detected objects per frame in roughly 1 ms on both Tegra X1 and Tegra X2 on-die GPUs, while taking 2 ms on Tegra K1. Furthermore, our proposed parallel greedy NMS algorithm yields a 14–40x speed up when compared to state-of-the-art NMS methods that require learning a CNN from annotated data.

Funder

Ministerio de Economía y Competitividad

Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya

European Commission

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model Development for Identifying Aromatic Herbs Using Object Detection Algorithm;AgriEngineering;2024-06-21

2. From Algorithm to Hardware: A Survey on Efficient and Safe Deployment of Deep Neural Networks;IEEE Transactions on Neural Networks and Learning Systems;2024

3. Design of Digital Museum System based on AR and ORB Optimization Algorithm;2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT);2023-10-20

4. Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3