On The (k,t)-Metric Dimension Of Graphs

Author:

Estrada-Moreno A1,Yero I G2,Rodríguez-Velázquez J A1

Affiliation:

1. Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain

2. Departamento de Matemáticas, Escuela Politécnica Superior de Algeciras Universidad de Cádiz, Av. Ramón Puyol s/n, 11202 Algeciras, Spain

Abstract

Abstract Let $(X,d)$ be a metric space. A set $S\subseteq X$ is said to be a $k$-metric generator for $X$ if and only if for any pair of different points $u,v\in X$, there exist at least $k$ points $w_1,w_2, \ldots w_k\in S$ such that $d(u,w_i)\ne d(v,w_i),\; \textrm{for all}\; i\in \{1, \ldots k\}.$ Let $\mathcal{R}_k(X)$ be the set of metric generators for $X$. The $k$-metric dimension $\dim _k(X)$ of $(X,d)$ is defined as $$\begin{equation*}\dim_k(X)=\inf\{|S|:\, S\in \mathcal{R}_k(X)\}.\end{equation*}$$Here, we discuss the $k$-metric dimension of $(V,d_t)$, where $V$ is the set of vertices of a simple graph $G$ and the metric $d_t:V\times V\rightarrow \mathbb{N}\cup \{0\}$ is defined by $d_t(x,y)=\min \{d(x,y),t\}$ from the geodesic distance $d$ in $G$ and a positive integer $t$. The case $t\ge D(G)$, where $D(G)$ denotes the diameter of $G$, corresponds to the original theory of $k$-metric dimension, and the case $t=2$ corresponds to the theory of $k$-adjacency dimension. Furthermore, this approach allows us to extend the theory of $k$-metric dimension to the general case of non-necessarily connected graphs. Finally, we analyse the computational complexity of determining the $k$-metric dimension of $(V,d_t)$ for the metric $d_t$.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference38 articles.

1. An algorithm for the weighted metric dimension of two-dimensional grids;Adar,2016

2. The $k$-metric dimension;Adar;J. Comb. Optim.,2017

3. The weighted 2-metric dimension of trees in the non-landmarks model;Adar;Discrete Optim.,2015

4. The metric dimension of metric spaces;Bau;Comput. Methods Funct. Theory,2013

5. On the $k$-metric dimension of metric spaces;Beardon;Ars Math. Contemp.,2019

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resolving Sets in Temporal Graphs;Lecture Notes in Computer Science;2024

2. A note on the complexity of k-metric dimension;Applied Mathematics and Computation;2023-11

3. Getting the Lay of the Land in Discrete Space: A Survey of Metric Dimension and Its Applications;SIAM Review;2023-11

4. Sharp bound on the truncated metric dimension of trees;Discrete Mathematics;2023-08

5. On distance-s locating and distance-t dominating sets in graphs;Discrete Mathematics, Algorithms and Applications;2023-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3