Pruning Neural Networks Using Multi-Armed Bandits

Author:

Ameen Salem1,Vadera Sunil1

Affiliation:

1. School of Computing, Science and Engineering, University of Salford, Manchester, UK

Abstract

AbstractThe successful application of deep learning has led to increasing expectations of their use in embedded systems. This, in turn, has created the need to find ways of reducing the size of neural networks. Decreasing the size of a neural network requires deciding which weights should be removed without compromising accuracy, which is analogous to the kind of problems addressed by multi-armed bandits (MABs). Hence, this paper explores the use of MABs for reducing the number of parameters of a neural network. Different MAB algorithms, namely $\epsilon $-greedy, win-stay, lose-shift, UCB1, KL-UCB, BayesUCB, UGapEb, successive rejects and Thompson sampling are evaluated and their performance compared to existing approaches. The results show that MAB pruning methods, especially those based on UCB, outperform other pruning methods.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference63 articles.

1. ImageNet classification with deep convolutional neural networks;Krizhevsky,2012

2. Visualizing and understanding convolutional networks;Zeiler,2014

3. Going deeper with convolutions;Szegedy,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3