Real-World Networks Are Not Always Fast Mixing

Author:

Qi Yi1,Xu Wanyue1,Zhu Liwang1,Zhang Zhongzhi12

Affiliation:

1. Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai 200433, China

2. Shanghai Engineering Research Institute of Blockchain, Shanghai 200433, China

Abstract

Abstract The mixing time of random walks on a graph has found broad applications across both theoretical and practical aspects of computer science, with the application effects depending on the behavior of mixing time. It is extensively believed that real-world networks, especially social networks, are fast mixing with their mixing time at most $O(\log N)$ where $N$ is the number of vertices. However, the behavior of mixing time in the real-life networks has not been examined carefully, and exactly analytical research for mixing time in models mimicking real networks is still lacking. In this paper, we first experimentally evaluate the mixing time of various real-world networks with scale-free small-world properties and show that their mixing time is much higher than anticipated. To better understand the behavior of the mixing time for real-world networks, we then analytically study the mixing time of the Apollonian network, which is simultaneously scale-free and small-world. To this end, we derive the recursive relations for all eigenvalues, especially the second largest eigenvalue modulus of the transition matrix, based on which we deduce a lower bound for the mixing time of the Apollonian network, which approximately scales sublinearly with $N$. Our results indicate that real-world networks are not always fast mixing, which has potential implications in the design of algorithms related to mixing time.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference38 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3