On Computing Component (Edge) Connectivities of Balanced Hypercubes

Author:

Gu Mei-Mei12,Chang Jou-Ming3,Hao Rong-Xia1

Affiliation:

1. Department of Mathematics, Beijing Jiaotong University, Beijing 100044, P.R. China

2. Faculty of Mathematics and Physics, Charles University, Prague 11800, Czech Republic

3. Institute of Information and Decision Sciences, National Taipei University of Business, Taipei 10051, Taiwan

Abstract

Abstract For an integer $\ell \geqslant 2$, the $\ell $-component connectivity (resp. $\ell $-component edge connectivity) of a graph $G$, denoted by $\kappa _{\ell }(G)$ (resp. $\lambda _{\ell }(G)$), is the minimum number of vertices (resp. edges) whose removal from $G$ results in a disconnected graph with at least $\ell $ components. The two parameters naturally generalize the classical connectivity and edge connectivity of graphs defined in term of the minimum vertex-cut and the minimum edge-cut, respectively. The two kinds of connectivities can help us to measure the robustness of the graph corresponding to a network. In this paper, by exploring algebraic and combinatorial properties of $n$-dimensional balanced hypercubes $BH_n$, we obtain the $\ell $-component (edge) connectivity $\kappa _{\ell }(BH_n)$ ($\lambda _{\ell }(BH_n)$). For $\ell $-component connectivity, we prove that $\kappa _2(BH_n)=\kappa _3(BH_n)=2n$ for $n\geq 2$, $\kappa _4(BH_n)=\kappa _5(BH_n)=4n-2$ for $n\geq 4$, $\kappa _6(BH_n)=\kappa _7(BH_n)=6n-6$ for $n\geq 5$. For $\ell $-component edge connectivity, we prove that $\lambda _3(BH_n)=4n-1$, $\lambda _4(BH_n)=6n-2$ for $n\geq 2$ and $\lambda _5(BH_n)=8n-4$ for $n\geq 3$. Moreover, we also prove $\lambda _\ell (BH_n)\leq 2n(\ell -1)-2\ell +6$ for $4\leq \ell \leq 2n+3$ and the upper bound of $\lambda _\ell (BH_n)$ we obtained is tight for $\ell =4,5$.

Funder

China Postdoctoral Science Foundation

Ministry of Science and Technology, Taiwan

National Natural Science Foundation of China

111 Project of China

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference24 articles.

1. Generalized connectivity in graphs;Chartrand;Bull. Bombay Math. Colloq.,1984

2. Connectivity of a graph–a generalization;Sampathkumar;J. Combin. Inform. Sys. Sci.,1984

3. Component connectivity of the hypercubes;Hsu;Int. J. Comput. Math.,2012

4. Component connectivity of hypercubes;Zhao;Theor. Comput. Sci.,2016

5. Conditional connectivity of folded hypercubes;Zhao;Discrete Appl. Math.,2019

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3