Defog YOLO for road object detection in foggy weather

Author:

Shi Xiaolong1,Song Anjun1

Affiliation:

1. School of Information Engineering, Shanghai Maritime University , Shanghai 201306 , China

Abstract

Abstract Object detection research predominantly focuses on clear weather conditions, often overlooking the challenges posed by foggy weather. Fog impairs the vision of onboard cameras, creating significant obstacles for autonomous vehicles. To tackle these issues, we present the Defog YOLO algorithm, specifically designed for road object detection in foggy conditions. Our approach integrates an enhanced U-Net framework for visual defogging, where the encoder leverages super-resolution back projection to combine multi-layer features. The decoder employs a back projection feedback mechanism to improve image restoration. Additionally, we augment the Feature Pyramid Network with a noise-aware attention mechanism, allowing the network to emphasize critical channel and spatial information while mitigating noise. Given the scarcity of labeled foggy images, we introduce a fog addition module to generate a more diverse training dataset. We validate our method using a synthesized FOG-TRAINVAL dataset, derived from the VOC dataset, demonstrating its robustness in foggy scenarios. Experimental results show that our proposed method achieves an mAP score of 60% on the Real-world Task-driven Testing Set foggy weather test set, with a precision of 86.7% and a recall of 54.2%. These findings underscore the effectiveness and improved generalizability of our approach for object detection in adverse weather conditions.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Offshore Ship Detection in Foggy Weather Based on Improved YOLOv8;Journal of Marine Science and Engineering;2024-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3