Redis-Based Messaging Queue and Cache-Enabled Parallel Processing Social Media Analytics Framework

Author:

Singh Ravindra Kumar1,Verma Harsh Kumar1

Affiliation:

1. Department of Computer Science and Engineering, Dr. B. R. Ambedkar National Institute of Technology, G.T. Road, Amritsar Bye-Pass, Jalandhar (Punjab), India. Zip Code- 144011

Abstract

Abstract The extensive usage of social media polarity analysis claims the need for real-time analytics and runtime outcomes on dashboards. In data analytics, only 30% of the time is consumed in modeling and evaluation stages and 70% is consumed in data engineering tasks. There are lots of machine learning algorithms to achieve a desirable outcome in prediction points of view, but they lack in handling data and their transformation so-called data engineering tasks, and reducing its time remained still challenging. The contribution of this research paper is to encounter the mentioned challenges by presenting a parallelly, scalable, effective, responsive and fault-tolerant framework to perform end-to-end data analytics tasks in real-time and batch-processing manner. An experimental analysis on Twitter posts supported the claims and signifies the benefits of parallelism of data processing units. This research has highlighted the importance of processing mentioned URLs and embedded images along with post content to boost the prediction efficiency. Furthermore, this research additionally provided a comparison of naive Bayes, support vector machines, extreme gradient boosting and long short-term memory (LSTM) machine learning techniques for sentiment analysis on Twitter posts and concluded LSTM as the most effective technique in this regard.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward Fast Query Serving in Key-Value Store Migration with Approximate Telemetry;ACM SIGMETRICS Performance Evaluation Review;2023-09-28

2. Distributed caching strategy for hot news propagation based on data engineering processing;Internet Technology Letters;2023-03-24

3. A web log real-time analysis platform based on stream computing;Third International Conference on Computer Vision and Data Mining (ICCVDM 2022);2023-02-03

4. An Early Warning Method for Resource Monitoring of Edge Service System;Software Engineering and Applications;2023

5. A Performance Evaluation of In-Memory Databases Operations in Session Initiation Protocol;Network;2022-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3