Lattice-Based Homomorphic Encryption For Privacy-Preserving Smart Meter Data Analytics

Author:

Marandi Ali1,Alves Pedro Geraldo M R2,Aranha Diego F3,Jacobsen Rune Hylsberg4

Affiliation:

1. Department of Applied Mathematics and Computer Science, Technical University of Denmark , Lyngby , Denmark

2. Institute of Computing, University of Campinas , Campinas , Brazil

3. DIGIT and Department of Computer Science, Aarhus University , Aarhus , Denmark

4. DIGIT and Department of Electrical and Computer Engineering, Aarhus University , Aarhus , Denmark

Abstract

Abstract Privacy-preserving smart meter data collection and analysis are critical for optimizing smart grid environments without compromising privacy. Using homomorphic encryption techniques, smart meters can encrypt collected data to ensure confidentiality, and other untrusted nodes can further compute over the encrypted data without having to recover the underlying plaintext. As an illustrative example, this approach can be useful to compute the monthly electricity consumption without violating consumer privacy by collecting fine-granular data through small increments of time. Toward that end, we propose an architecture for privacy-preserving smart meter data collection, aggregation and analysis based on lattice-based homomorphic encryption. Furthermore, we compare the proposed method with the Paillier and Boneh–Goh–Nissim (BGN) cryptosystems, which are popular alternatives for homomorphic encryption in smart grids. We consider different services with different requirements in terms of multiplicative depth, e.g. billing, variance and nonlinear support vector machine classification. Accordingly, we measure and show the practical overhead of using the proposed homomorphic encryption method in terms of communication traffic (ciphertext size) and latency. Our results show that lattice-based homomorphic encryption is more efficient than Paillier and BGN for both multiplication and addition operations while offering more flexibility in terms of the computation that can be evaluated homomorphically.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Privacy-Preserving Network Traffic Analysis Using Homomorphic Encryption;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3