Near Real-Time Social Distance Estimation In London

Author:

Walsh James1,Kesa Oluwafunmilola2,Wang Andrew3,Ilas Mihai3,O’Hara Patrick2,Giles Oscar1,Dhir Neil12,Girolami Mark14,Damoulas Theodoros125

Affiliation:

1. The Alan Turing Institute; Departments of

2. Computer Science

3. Christ’s College, University of Cambridge

4. Department of Engineering, University of Cambridge

5. Statistics, University of Warwick

Abstract

Abstract To mitigate the current COVID-19 pandemic, policy makers at the Greater London Authority, the regional governance body of London, UK, are reliant upon prompt, accurate and actionable estimations of lockdown and social distancing policy adherence. Transport for London, the local transportation department, reports they implemented over 700 interventions such as greater signage and expansion of pedestrian zoning at the height of the pandemic’s first wave with our platform providing key data for those decisions. Large well-defined heterogeneous compositions of pedestrian footfall and physical proximity are difficult to acquire, yet necessary to monitor city-wide activity (busyness) and consequently discern actionable policy decisions. To meet this challenge, we leverage our existing large-scale data processing urban air quality machine learning infrastructure to process over 900 camera feeds in near real-time to generate new estimates of social distancing adherence, group detection and camera stability. In this work, we describe our development and deployment of a computer vision and machine learning pipeline. It provides near immediate sampling and contextualization of activity and physical distancing on the streets of London via live traffic camera feeds. We introduce a platform for inspecting, calibrating and improving upon existing methods, describe the active deployment on real-time feeds and provide analysis over an 18 month period.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference49 articles.

1. Lockdown-type measures look effective against covid-19;May;BMJ,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3