Compounds enhancing human sperm motility identified using a high-throughput phenotypic screening platform

Author:

Gruber Franz S1ORCID,Johnston Zoe C2ORCID,Norcross Neil R3ORCID,Georgiou Irene3ORCID,Wilson Caroline3ORCID,Read Kevin D3,Gilbert Ian H3ORCID,Swedlow Jason R14ORCID,Martins da Silva Sarah2ORCID,Barratt Christopher L R2ORCID

Affiliation:

1. National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, UK

2. Reproductive Medicine Research Group, Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK

3. Drug Discovery Unit, Division of Biological Chemistry and Drug Discover, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK

4. Division of Computational Biology and Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK

Abstract

Abstract STUDY QUESTION Can a high-throughput screening (HTS) platform facilitate male fertility drug discovery? SUMMARY ANSWER An HTS platform identified a large number of compounds that enhanced sperm motility. WHAT IS KNOWN ALREADY Several efforts to find small molecules modulating sperm function have been performed but none have used high-throughput technology. STUDY DESIGN, SIZE, DURATION Healthy donor semen samples were used and samples were pooled (3–5 donors per pool). Primary screening was performed singly; dose–response screening was performed in duplicate (using independent donor pools). PARTICIPANTS/MATERIALS, SETTING, METHODS Spermatozoa isolated from healthy donors were prepared by density gradient centrifugation and incubated in 384-well plates with compounds (6.25 μM) to identify those compounds with enhancing effects on motility. Approximately 17 000 compounds from the libraries, ReFRAME, Prestwick, Tocris, LOPAC, CLOUD and MMV Pathogen Box, were screened. Dose–response experiments of screening hits were performed to confirm the enhancing effect on sperm motility. Experiments were performed in a university setting. MAIN RESULTS AND THE ROLE OF CHANCE From our primary single concentration screening, 105 compounds elicited an enhancing effect on sperm motility compared to dimethylsulphoxide-treated wells. Confirmed enhancing compounds were grouped based on their annotated targets/target classes. A major target class, phosphodiesterase inhibitors, were identified, in particular PDE10A inhibitors as well as number of compounds not previously known to enhance human sperm motility, such as those related to GABA signalling. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Although this approach provides data about the activity of the compound, it is only a starting point. For example, further substantive experiments are necessary to provide a more comprehensive picture of each compound’s activity, the effect on the kinetics of the cell populations and subpopulations, and their potential mechanisms of action. Compounds have been tested with prepared donor spermatozoa, incubated under non-capacitating conditions, and only incubated with compounds for a relatively short period of time. Therefore, the effect of compounds under different conditions, for example in whole semen, for longer incubation times, or using samples from patient groups, may be different and require further study. All experiments were performed in vitro. WIDER IMPLICATIONS OF THE FINDINGS This phenotypic screening assay identified a large number of compounds that increased sperm motility. In addition to furthering our understanding of human sperm function, for example identifying new avenues for discovery, we highlight potential compounds as promising start-point for a medicinal chemistry programme for potential enhancement of male fertility. Moreover, with disclosure of the results of screening, we present a substantial resource to inform further work in the field. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Bill and Melinda Gates Foundation, Scottish Funding Council and Scottish Universities Life Science Alliance. C.L.R.B. is Editor for RBMO. C.L.R.B. receives funding from Chief Scientists Office (Scotland), ESHRE and Genus PLC, consulting fees from Exscientia and lecture fees from Cooper Surgical and Ferring. S.M.d.S. is an Associate Editor of Human Reproduction, and an Associate Editor of Reproduction and Fertility. S.M.d.S. receives funding from Cooper Surgical and British Dietetic Society. No other authors declared a COI.

Funder

Bill and Melinda Gates Foundation

Scottish Funding Council and Scottish Universities Life Science Alliance

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3