A biallelic loss of function variant in HORMAD1 within a large consanguineous Turkish family is associated with spermatogenic arrest

Author:

Okutman Ozlem12ORCID,Boivin Manon3,Muller Jean145ORCID,Charlet-Berguerand Nicolas3,Viville Stéphane12ORCID

Affiliation:

1. Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d’Alsace IGMA, INSERM UMR 1112, Université de Strasbourg , Strasbourg, France

2. Laboratoire de Diagnostic Génétique, Unité de Génétique de l’infertilité (UF3472), Hôpitaux Universitaires de Strasbourg , Strasbourg, France

3. Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM), U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg , Illkirch, France

4. Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg , Strasbourg, France

5. Unité Fonctionnelle de Bioinformatique Médicale appliquée au diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg , Strasbourg, France

Abstract

Abstract STUDY QUESTION Can the analysis of a large Turkish consanguineous family via whole exome sequencing (WES) identify novel causative genetic variation responsible for nonobstructive azoospermia (NOA) characterized by arrest at primary spermatocyte stage? SUMMARY ANSWER WES analysis revealed a homozygous nonsense variant in HORMAD1 in three affected brothers of a Turkish family. WHAT IS KNOWN ALREADY Studying patient cohorts in small or large consanguineous families using high-throughput sequencing allows the identification of genetic causes of different pathologies, including infertility. Over the last two decades, a number of genes involved in human male infertility have been discovered, but only 14 genes have been identified as being at least moderately linked to isolated NOA or oligozoospermia in men. STUDY DESIGN, SIZE, DURATION The study included a Turkish family comprising three brothers with NOA. Two brothers had a normal karyotype, normal hormonal levels and no Yq microdeletion. The testicular histopathology analysis revealed the complete arrest of spermatogenesis at the primary spermatocyte stage. PARTICIPANTS/MATERIALS, SETTING, METHODS We recruited a consanguineous Turkish family where parents were first-degree cousins and had seven children; three sons who had NOA, two sons who were fertile and two daughters for whom no information was available. Saliva samples from the index patient, his two affected brothers, parents and two nonaffected brothers (seven samples in total) were collected. Prior to WES, the index patient underwent targeted genetic testing using an infertility panel, which includes 133 infertility genes. No pathogenic variations were identified. WES was then performed on the DNA of the seven family members available. Bioinformatics analysis was performed using an in-house pipeline. Detected variants were scored and ranked, and copy number variants were called and annotated. The consequences of mutation on protein expression and localization were investigated by cell transfection followed by immunofluorescence or immunoblotting. MAIN RESULTS AND THE ROLE OF CHANCE WES revealed a homozygous nonsense variant chr1:150675797G>A; HORMAD1 (NM_032132.5): c.1021C>T, p.Gln341* in exon 13, which was confirmed in all three affected brothers. HORMAD1 encodes the HORMA domain-containing protein 1. The parents as well as the two fertile brothers were carriers of this variant. This variant may lead to the production of a truncated protein lacking the nuclear localization signal; therefore, human cells were transfected with the wild-type and mutated form, in fusion with green fluorescent protein. Immunoblotting experiments confirmed the production of a truncated HORMAD1 protein, and immunofluorescence microscopy revealed that the mutated protein displayed cytoplasmic localization while the wild type protein located to the nucleus. Altogether, our findings validate HORMAD1 as an essential genetic factor in the meiotic process in human. LIMITATIONS, REASONS FOR CAUTION According to one scoring system used to evaluate the clinical validity of male infertility genes, this study would classify HORMAD1 as displaying limited clinical evidence of being involved in male infertility. However, such a score is the maximum possible when only one family is analyzed and the addition of one patient showing a pathogenic or likely pathogenic variant would immediately change this classification to ‘moderate’. Thus, this report should prompt other researchers to screen patients with NOA for this genetic variant. WIDER IMPLICATIONS OF THE FINDINGS Identification of new genetic factors involved in the human meiosis process will contribute to an improvement of our knowledge at the basic level, which in turn will allow the management of better care for infertile patients. Since Hormad1−/− knock-out female mice are also infertile, HORMAD1 could also be involved in human female infertility. Our findings have direct implications for the genetic counseling of patients and their family members. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by Fondation Maladies Rares (High Throughput Sequencing and Rare Diseases—2018, ‘GenOmics of rare diseases’). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER N/A.

Funder

Fondation Maladies Rares

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

Reference38 articles.

1. A global reference for human genetic variation;1000 Genomes Project Consortium;Nature,2015

2. Predicting functional effect of human missense mutations using PolyPhen-2;Adzhubei;Curr Protoc Hum Genet,2013

3. CANOES: detecting rare copy number variants from whole exome sequencing data;Backenroth;Nucleic Acids Res,2014

4. Adapting ACMG/AMP sequence variant classification guidelines for single-gene copy number variants;Brandt;Genet Med,2020

5. A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1;Caryl;Chromosoma,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3