Season at the time of oocyte collection and frozen embryo transfer outcomes

Author:

Leathersich S J123ORCID,Roche C S1,Walls M234,Nathan E4,Hart R J1234ORCID

Affiliation:

1. Department of Reproductive Medicine, King Edward Memorial Hospital , Subiaco, Australia

2. City Fertility Australia , Claremont, Australia

3. Fertility Specialists of Western Australia , Claremont, Australia

4. Division of Obstetrics and Gynaecology, The University of Western Australia , Crawley, Australia

Abstract

Abstract STUDY QUESTION Does the meteorological season at the time of oocyte retrieval affect live birth rates in subsequent frozen embryo transfers? SUMMARY ANSWER Frozen embryo transfers resulting from oocytes retrieved in summer have 30% increased odds of live birth compared to frozen embryo transfers resulting from oocytes retrieved in autumn, regardless of the season at the time of embryo transfer. WHAT IS KNOWN ALREADY Season at the time of frozen embryo transfer does not appear to be associated with live birth rate. One study in the northern hemisphere found increased odds of live birth with frozen embryo transfer resulting from oocytes collected in summer when compared to those collected in winter. STUDY DESIGN, SIZE, DURATION Retrospective cohort study including all frozen embryo transfers performed by a single clinic over eight years, from January 2013 to December 2021. There were 3659 frozen embryo transfers with embryos generated from 2155 IVF cycles in 1835 patients. Outcome data were missing for two embryo transfers, which were excluded from analysis. Outcomes were analysed by the season, temperatures, and measured duration of sunshine at the time of oocyte collection and at the time of frozen embryo transfer. PARTICIPANTS/MATERIALS, SETTING, METHODS There were no significant differences between patients with oocyte collection or embryo transfers in different seasons. Meteorological conditions on the day of oocyte collection and the day of frozen embryo transfer, and in the preceding 14- and 28-day periods, were collected including mean, minimum, and maximum temperatures, and recorded duration of sunshine hours. Clinical and embryological outcomes were analysed for their association with seasons, temperatures, and duration of sunshine with correction for repeated cycles per participant, age at the time of oocyte retrieval, and quadratic age. MAIN RESULTS AND THE ROLE OF CHANCE Compared to frozen embryo transfers with oocyte retrieval dates in autumn, transfers with oocyte retrieval dates in summer had 30% increased odds of live birth (odds ratio (OR): 1.30, 95% CI: 1.04–1.62) which remained consistent after adjustment for season at the time of embryo transfer. A high duration of sunshine hours (in the top tertile) on the day of oocyte retrieval was associated with a 28% increase in odds of live birth compared to duration of sunshine hours in the lowest tertile (OR 1.28, 95% CI: 1.06–1.53). Temperature on the day of oocyte retrieval did not independently affect the odds of live birth. The odds of live birth were decreased by 18% when the minimum temperature on the day of embryo transfer was high, compared with low (OR: 0.82, 95% CI: 0.69–0.99), which was consistent after correction for the conditions at the time of oocyte retrieval. LIMITATIONS, REASONS FOR CAUTION This was a retrospective cohort study, however, all patients during the study period were included and data was missing for only two patients. Given the retrospective nature, causation is not proven and there are other factors that may affect live birth rates and for which we did not have data and were unable to adjust, including pollutants and behavioural factors. We were also not able to stratify results based on specific patient populations (such as poor- or hyper-responders) nor report the cumulative live birth rate per commenced cycle. WIDER IMPLICATIONS OF THE FINDINGS These findings may be particularly relevant for patients planning oocyte or embryo cryopreservation. Given the increasing utilization of cryopreservation, identification of factors that influence outcomes in subsequent frozen embryo transfers has implications for future therapeutic and management options. Further studies to clarify the physiology underlying the influence of sunshine hours or season on subsequent frozen embryo transfer outcomes are required, including identification of specific populations that may benefit from these factors. STUDY FUNDING/COMPETING INTERESTS No funding was provided for this study. S.L. has received educational travel assistance from Besins, Merck and Organon outside the submitted work. R.H. is National Medical Director of City Fertility and Medical Director of Fertility Specialists of Western Australia, has received honoraria from MSD, Merck Serono, Origio and Ferring outside the submitted work, and has equity interests in CHA SMG. C.R., M.W., and E.N. declare that they have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3