RNA profiling of human testicular cells identifies syntenic lncRNAs associated with spermatogenesis

Author:

Rolland A D1,Evrard B1,Darde T A12,Le Béguec C1,Le Bras Y2,Bensalah K3,Lavoué S4,Jost B5,Primig M1,Dejucq-Rainsford N1,Chalmel F1,Jégou B1

Affiliation:

1. Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S1085, Rennes, France

2. Univ Rennes, Inria, CNRS, IRISA, Rennes, France

3. Urology Department, University of Rennes, Rennes, France

4. Unité de Coordination Hospitalière des Prélèvements d'organes et de Tissus, Centre Hospitalier Universitaire de Rennes, Rennes, France

5. Plateforme GenomEast—Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, Illkirch, France

Abstract

Abstract STUDY QUESTION Is the noncoding transcriptional landscape during spermatogenesis conserved between human and rodents? SUMMARY ANSWER We identified a core group of 113 long noncoding RNAs (lncRNAs) and 20 novel genes dynamically and syntenically transcribed during spermatogenesis. WHAT IS KNOWN ALREADY Spermatogenesis is a complex differentiation process driven by a tightly regulated and highly specific gene expression program. Recently, several studies in various species have established that a large proportion of known lncRNAs are preferentially expressed during meiosis and spermiogenesis in a testis-specific manner. STUDY DESIGN, SIZE, DURATION To further investigate lncRNA expression in human spermatogenesis, we carried out a cross-species RNA profiling study using isolated testicular cells. PARTICIPANTS/MATERIALS, SETTING, METHODS Human testes were obtained from post-mortem donors (N = 8, 51 years old on average) or from prostate cancer patients with no hormonal treatment (N = 9, 80 years old on average) and only patients with full spermatogenesis were used to prepare enriched populations of spermatocytes, spermatids, Leydig cells, peritubular cells and Sertoli cells. To minimize potential biases linked to inter-patient variations, RNAs from two or three donors were pooled prior to RNA-sequencing (paired-end, strand-specific). Resulting reads were mapped to the human genome, allowing for assembly and quantification of corresponding transcripts. MAIN RESULTS AND THE ROLE OF CHANCE Our RNA-sequencing analysis of pools of isolated human testicular cells enabled us to reconstruct over 25 000 transcripts. Among them we identified thousands of lncRNAs, as well as many previously unidentified genes (novel unannotated transcripts) that share many properties of lncRNAs. Of note is that although noncoding genes showed much lower synteny than protein-coding ones, a significant fraction of syntenic lncRNAs displayed conserved expression during spermatogenesis. LARGE SCALE DATA Raw data files (fastq) and a searchable table (.xlss) containing information on genomic features and expression data for all refined transcripts have been submitted to the NCBI Gene Expression Omnibus under accession number GSE74896. LIMITATIONS, REASONS FOR CAUTION Isolation procedures may alter the physiological state of testicular cells, especially for somatic cells, leading to substantial changes at the transcriptome level. We therefore cross-validated our findings with three previously published transcriptomic analyses of human spermatogenesis. Despite the use of stringent filtration criteria, i.e. expression cut-off of at least three fragments per kilobase of exon model per million reads mapped, fold-change of at least three and false discovery rate adjusted P-values of less than <1%, the possibility of assembly artifacts and false-positive transcripts cannot be fully ruled out. WIDER IMPLICATIONS OF THE FINDINGS For the first time, this study has led to the identification of a large number of conserved germline-associated lncRNAs that are potentially important for spermatogenesis and sexual reproduction. In addition to further substantiating the basis of the human testicular physiology, our study provides new candidate genes for male infertility of genetic origin. This is likely to be relevant for identifying interesting diagnostic and prognostic biomarkers and also potential novel therapeutic targets for male contraception. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by l’Institut national de la santé et de la recherche médicale (Inserm); l’Université de Rennes 1; l’Ecole des hautes études en santé publique (EHESP); INERIS-STORM to B.J. [N 10028NN]; Rennes Métropole ‘Défis scientifiques émergents’ to F.C (2011) and A.D.R (2013). The authors have no competing financial interests.

Funder

Rennes Métropole ‘Défis Scientifiques Émergents’

INERIS-STORM

l’Ecole des Hautes Études en Santé Publique

l’Université de Rennes 1

l’Institut National de la Santé et de la Recherche Médicale

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3