Three-dimensional microengineered vascularised endometrium-on-a-chip

Author:

Ahn Jungho12,Yoon Min-Ji3,Hong Seon-Hwa4,Cha Hwijae3,Lee Danbi3,Koo Hwa Seon4,Ko Ji-Eun4,Lee Jungseub5,Oh Soojung6,Jeon Noo Li5,Kang Youn-Jung134ORCID

Affiliation:

1. Department of Biochemistry, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea

2. Research Competency Milestones Program of School of Medicine, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea

3. Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea

4. CHA Fertility Center Bundang, Seongnam-si, Gyeonggi-do, Republic of Korea

5. Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul-si, Republic of Korea

6. AMOREPACIFIC Research and Development Center, Yongin-si, Gyeonggi-do, Republic of Korea

Abstract

Abstract STUDY QUESTION Can we reconstitute physiologically relevant 3-dimensional (3D) microengineered endometrium in-vitro model? SUMMARY ANSWER Our representative microengineered vascularised endometrium on-a-chip closely recapitulates the endometrial microenvironment that consists of three distinct layers including epithelial cells, stromal fibroblasts and endothelial cells in a 3D extracellular matrix in a spatiotemporal manner. WHAT IS KNOWN ALREADY Organ-on-a-chip, a multi-channel 3D microfluidic cell culture system, is widely used to investigate physiologically relevant responses of organ systems. STUDY DESIGN, SIZE, DURATION The device consists of five microchannels that are arrayed in parallel and partitioned by array of micropost. Two central channels are for 3D culture and morphogenesis of stromal fibroblast and endothelial cells. In addition, the outermost channel is for the culture of additional endometrial stromal fibroblasts that secrete biochemical cues to induce directional pro-angiogenic responses of endothelial cells. To seed endometrial epithelial cells, on Day 8, Ishikawa cells were introduced to one of the two medium channels to adhere on the gel surface. After that, the microengineered endometrium was cultured for an additional 5–6 days (total ∼ 14 days) for the purpose of each experiment. PARTICIPANTS/MATERIALS, SETTING, METHODS Microfluidic 3D cultures were maintained in endothelial growth Medium 2 with or without oestradiol and progesterone. Some cultures additionally received exogenous pro-angiogenic factors. For the three distinct layers of microengineered endometrium-on-a-chip, the epithelium, stroma and blood vessel characteristics and drug response of each distinct layer in the microfluidic model were assessed morphologically and biochemically. The quantitative measurement of endometrial drug delivery was evaluated by the permeability coefficients. MAIN RESULTS AND THE ROLE OF CHANCE We established microengineered vascularised endometrium-on-chip, which consists of three distinct layers: epithelium, stroma and blood vessels. Our endometrium model faithfully recapitulates in-vivo endometrial vasculo-angiogenesis and hormonal responses displaying key features of the proliferative and secretory phases of the menstrual cycle. Furthermore, the effect of the emergency contraception drug levonorgestrel was evaluated in our model demonstrating increased endometrial permeability and blood vessel regression in a dose-dependent manner. We finally provided a proof of concept of the multi-layered endometrium model for embryo implantation, which aids a better understanding of the molecular and cellular mechanisms underlying this process. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This report is largely an in-vitro study and it would be beneficial to validate our findings using human primary endometrial cells. WIDER IMPLICATIONS OF THE FINDINGS Our 3D microengineered vascularised endometrium-on-a-chip provides a new in-vitro approach to drug screening and drug discovery by mimicking the complicated behaviours of human endometrium. Thus, we suggest our model as a tool for addressing critical challenges and unsolved problems in female diseases, such as endometriosis, uterine cancer and female infertility, in a personalised manner. STUDY FUNDING/COMPETING INTEREST(S) This work is supported by funding from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) to Y.J.K. (No. 2018R1C1B6003), to J.A. (No. 2020R1I1A1A01074136) and to H.S.K. (No. 2020R1C1C100787212). The authors report no conflicts of interest.

Funder

National Research Foundation of Korea

Korea government

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3