Bi-allelic variants in KCNU1 cause impaired acrosome reactions and male infertility

Author:

Liu Ruyi1ORCID,Yan Zheng2ORCID,Fan Yong2ORCID,Qu Ronggui13ORCID,Chen Biaobang4ORCID,Li Bin2,Wu Ling2,Wu Haibo2,Mu Jian1,Zhao Lin4,Wang Wenjing1,Dong Jie1,Zeng Yang1,Li Qiaoli1,Wang Lei1ORCID,Sang Qing1ORCID,Zhang Zhihua1ORCID,Kuang Yanping2ORCID

Affiliation:

1. Institute of Pediatrics, Children’s Hospital of Fudan University, The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University , Shanghai, China

2. Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China

3. Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University , Shanghai, China

4. Institute of Reproductive Health, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China

Abstract

Abstract STUDY QUESTION Are there new genetic factors responsible for male infertility with normal sperm quantity and morphology? SUMMARY ANSWER We identified the bi-allelic variants in KCNU1 and confirmed it a novel pathogenetic gene for male infertility mainly due to impaired sperm acrosome reactions (ARs). WHAT IS KNOWN ALREADY Until now, the underlying genetic determinants for male affected individuals exhibiting normal sperm quantity and morphology have been largely unknown. Potassium/calcium-activated channel subfamily U member 1 (KCNU1) is a sperm-specific potassium channel. The Kcnu1 null mutation in male mice causes infertility due to the impaired progressive motility and AR. STUDY DESIGN, SIZE, DURATION We recruited a cohort of 126 male infertility individuals with typical asthenospermia or fertilization failure and focused on two infertile males from two consanguineous families from 2015 to 2020; whole-exome sequencing and homozygosity mapping were performed. We identified a homozygous missense variant (c.2144A>G, p.His715Arg) and a homozygous donor splice-site variant (c.1295 + 3A>C, p.Val405Glyfs*8) in KCNU1. Then, we generated a knock-in (KI) mouse model in September 2020 and have now carried out functional studies and possible treatment strategies. PARTICIPANTS/MATERIALS, SETTING, METHODS The affected individuals with infertility were recruited from the Shanghai Ninth Hospital affiliated to Shanghai Jiao Tong University. Genomic DNA from the affected individual was extracted from peripheral blood. Whole-exome sequencing, homozygosity mapping and in silico analyses were used to screen and identify KCNU1 variants, and the variants were confirmed by Sanger sequencing. We used C57BL/6N mouse to construct KI mouse model to mimic the reproductive phenotype in vivo. We performed functional experiments by western blotting, AR assay and immunofluorescent Staining. Finally, we performed IVF and ICSI to explore the treatment strategies. MAIN RESULTS AND THE ROLE OF CHANCE We identified a homozygous missense variant (c.2144A>G, p.His715Arg) and a homozygous donor splice-site variant (c.1295 + 3A>C, p.Val405Glyfs*8) in KCNU1 in two infertile males. We demonstrated that the splice-site variant affected normal alternative splicing of KCNU1, thus leading to the loss of function of KCNU1. Meanwhile, the missense pathogenic variant reduced the KCNU1 protein levels in sperm of both the affected individual and the KI mouse model, resulting in impaired ARs and male infertility. Intracytoplasmic sperm injection was able to rescue the deficiencies. LARGE SCALE DATA N/A  LIMITATIONS, REASONS FOR CAUTION The exact molecular mechanism of KCNU1 and pathways need to be further explore in the future. WIDER IMPLICATIONS OF THE FINDINGS This is the first report that establishes a causal relationship between KCNU1 deficiency and male infertility, confirming the critical role of KCNU1 in human reproduction. Our findings expand our knowledge of the genes that play critical roles in the human sperm AR and provide a new genetic marker for infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the SHIPM-pi fund no. JY201801 from the Shanghai Institute of Precision Medicine, Ninth People’s Hospital Shanghai Jiao Tong University School of Medicine, the National Natural Science Foundation of China (81725006, 81771649, 81822019, 81771581, 81971450, 81971382, 82001538 and 82071642). The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER N/A.

Funder

SHIPM-pi

Shanghai Institute of Precision Medicine, Ninth People’s Hospital Shanghai Jiao Tong University School of Medicine

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3