Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF

Author:

VerMilyea M12,Hall J M M34,Diakiw S M3,Johnston A35,Nguyen T3,Perugini D3,Miller A1,Picou A1,Murphy A P3,Perugini M36

Affiliation:

1. Laboratory Operations, Ovation Fertility, Austin, TX 78731, USA

2. IVF Laboratory, Texas Fertility Center, Austin, TX 78731, USA

3. Life Whisperer Diagnostics, Presagen Pty Ltd., Adelaide, SA 5000, Australia

4. Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA 5000, Australia

5. Australian Institute for Machine Learning, School of Computer Science, The University of Adelaide, Adelaide, SA 5000, Australia

6. Adelaide Medical School, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5000, Australia

Abstract

Abstract STUDY QUESTION Can an artificial intelligence (AI)-based model predict human embryo viability using images captured by optical light microscopy? SUMMARY ANSWER We have combined computer vision image processing methods and deep learning techniques to create the non-invasive Life Whisperer AI model for robust prediction of embryo viability, as measured by clinical pregnancy outcome, using single static images of Day 5 blastocysts obtained from standard optical light microscope systems. WHAT IS KNOWN ALREADY Embryo selection following IVF is a critical factor in determining the success of ensuing pregnancy. Traditional morphokinetic grading by trained embryologists can be subjective and variable, and other complementary techniques, such as time-lapse imaging, require costly equipment and have not reliably demonstrated predictive ability for the endpoint of clinical pregnancy. AI methods are being investigated as a promising means for improving embryo selection and predicting implantation and pregnancy outcomes. STUDY DESIGN, SIZE, DURATION These studies involved analysis of retrospectively collected data including standard optical light microscope images and clinical outcomes of 8886 embryos from 11 different IVF clinics, across three different countries, between 2011 and 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS The AI-based model was trained using static two-dimensional optical light microscope images with known clinical pregnancy outcome as measured by fetal heartbeat to provide a confidence score for prediction of pregnancy. Predictive accuracy was determined by evaluating sensitivity, specificity and overall weighted accuracy, and was visualized using histograms of the distributions of predictions. Comparison to embryologists’ predictive accuracy was performed using a binary classification approach and a 5-band ranking comparison. MAIN RESULTS AND THE ROLE OF CHANCE The Life Whisperer AI model showed a sensitivity of 70.1% for viable embryos while maintaining a specificity of 60.5% for non-viable embryos across three independent blind test sets from different clinics. The weighted overall accuracy in each blind test set was >63%, with a combined accuracy of 64.3% across both viable and non-viable embryos, demonstrating model robustness and generalizability beyond the result expected from chance. Distributions of predictions showed clear separation of correctly and incorrectly classified embryos. Binary comparison of viable/non-viable embryo classification demonstrated an improvement of 24.7% over embryologists’ accuracy (P = 0.047, n = 2, Student’s t test), and 5-band ranking comparison demonstrated an improvement of 42.0% over embryologists (P = 0.028, n = 2, Student’s t test). LIMITATIONS, REASONS FOR CAUTION The AI model developed here is limited to analysis of Day 5 embryos; therefore, further evaluation or modification of the model is needed to incorporate information from different time points. The endpoint described is clinical pregnancy as measured by fetal heartbeat, and this does not indicate the probability of live birth. The current investigation was performed with retrospectively collected data, and hence it will be of importance to collect data prospectively to assess real-world use of the AI model. WIDER IMPLICATIONS OF THE FINDINGS These studies demonstrated an improved predictive ability for evaluation of embryo viability when compared with embryologists’ traditional morphokinetic grading methods. The superior accuracy of the Life Whisperer AI model could lead to improved pregnancy success rates in IVF when used in a clinical setting. It could also potentially assist in standardization of embryo selection methods across multiple clinical environments, while eliminating the need for complex time-lapse imaging equipment. Finally, the cloud-based software application used to apply the Life Whisperer AI model in clinical practice makes it broadly applicable and globally scalable to IVF clinics worldwide. STUDY FUNDING/COMPETING INTEREST(S) Life Whisperer Diagnostics, Pty Ltd is a wholly owned subsidiary of the parent company, Presagen Pty Ltd. Funding for the study was provided by Presagen with grant funding received from the South Australian Government: Research, Commercialisation and Startup Fund (RCSF). ‘In kind’ support and embryology expertise to guide algorithm development were provided by Ovation Fertility. J.M.M.H., D.P. and M.P. are co-owners of Life Whisperer and Presagen. Presagen has filed a provisional patent for the technology described in this manuscript (52985P pending). A.P.M. owns stock in Life Whisperer, and S.M.D., A.J., T.N. and A.P.M. are employees of Life Whisperer.

Funder

South Australian Government: Research, Commercialisation and Startup Fund

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

Reference21 articles.

1. Biochemical pregnancy during assisted conception: a little bit pregnant;Annan;J Clin Med Res,2013

2. Random forests;Breiman;Machine Learning,2001

3. Does time-lapse imaging have favorable results for embryo incubation and selection compared with conventional methods in clinical in vitro fertilization? A meta-analysis and systematic review of randomized controlled trials;Chen;PLoS One,2017

4. Diagnosis of human preimplantation embryo viability;Gardner;Hum Reprod Update,2015

5. Assessment of embryo viability: the ability to select a single embryo for transfer—a review;Gardner;Placenta,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3