Proteome of fluid from human ovarian small antral follicles reveals insights in folliculogenesis and oocyte maturation

Author:

Pla Indira12,Sanchez Aniel12,Pors Susanne Elisabeth3,Pawlowski Krzysztof24,Appelqvist Roger2,Sahlin K Barbara12,Poulsen Liv La Cour5,Marko-Varga György26,Andersen Claus Yding3,Malm Johan12

Affiliation:

1. Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden

2. Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden

3. Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark

4. Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences SGGW, Warszawa 02-787, Poland

5. Fertility Clinic, Department of Gynaecology and Obstetrics, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark

6. First Department of Surgery, Tokyo Medical University, Shinjiku-ku, Japan

Abstract

Abstract STUDY QUESTION Is it possible to identify by mass spectrometry a wider range of proteins and key proteins involved in folliculogenesis and oocyte growth and development by studying follicular fluid (FF) from human small antral follicles (hSAF)? SUMMARY ANSWER The largest number of proteins currently reported in human FF was identified in this study analysing hSAF where several proteins showed a strong relationship with follicular developmental processes. WHAT IS KNOWN ALREADY Protein composition of human ovarian FF constitutes the microenvironment for oocyte development. Previous proteomics studies have analysed fluids from pre-ovulatory follicles, where large numbers of plasma constituents are transferred through the follicular basal membrane. This attenuates the detection of low abundant proteins, however, the basal membrane of small antral follicles is less permeable, making it possible to detect a large number of proteins, and thereby offering further insights in folliculogenesis. STUDY DESIGN, SIZE, DURATION Proteins in FF from unstimulated hSAF (size 6.1 ± 0.4 mm) were characterised by mass spectrometry, supported by high-throughput and targeted proteomics and bioinformatics. The FF protein profiles from hSAF containing oocytes, capable or not of maturing to metaphase II of the second meiotic division during an IVM (n = 13, from 6 women), were also analysed. PARTICIPANTS/MATERIALS, SETTING, METHODS We collected FF from hSAF of ovaries that had been surgically removed from 31 women (∼28.5 years old) undergoing unilateral ovariectomy for fertility preservation. MAIN RESULTS AND THE ROLE OF CHANCE In total, 2461 proteins were identified, of which 1108 identified for the first time in FF. Of the identified proteins, 24 were related to follicular regulatory processes. A total of 35 and 65 proteins were down- and up-regulated, respectively, in fluid from hSAF surrounding oocytes capable of maturing (to MII). We found that changes at the protein level occur already in FF from small antral follicles related to subsequent oocyte maturation. LIMITATIONS, REASONS FOR CAUTION A possible limitation of our study is the uncertainty of the proportion of the sampled follicles that are undergoing atresia. Although the FF samples were carefully aspirated and processed to remove possible contaminants, we cannot ensure the absence of some proteins derived from cellular lysis provoked by technical reasons. WIDER IMPLICATIONS OF THE FINDINGS This study is, to our knowledge, the first proteomics characterisation of FF from hSAF obtained from women in their natural menstrual cycle. We demonstrated that the analysis by mass spectrometry of FF from hSAF allows the identification of a greater number of proteins compared to the results obtained from previous analyses of larger follicles. Significant differences found at the protein level in hSAF fluid could predict the ability of the enclosed oocyte to sustain meiotic resumption. If this can be confirmed in further studies, it demonstrates that the viability of the oocyte is determined early on in follicular development and this may open up new pathways for augmenting or attenuating subsequent oocyte viability in the pre-ovulatory follicle ready to undergo ovulation. STUDY FUNDING/COMPETING INTEREST(S) The authors thank the financial support from ReproUnion, which is funded by the Interreg V EU programme. No conflict of interest was reported by the authors. TRIAL REGISTRATION NUMBER N/A

Funder

ReproUnion collaborative study

Interreg V

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynaecology,Rehabilitation,Reproductive Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3