Bi-allelic mutations in MOS cause female infertility characterized by preimplantation embryonic arrest

Author:

Zeng Yang1,Shi Juanzi2,Xu Shiru3,Shi Rong2,Wu Tonghua3,Li Hongyan3,Xue Xia2,Zhu Yuanchang3,Chen Biaobang4,Sang Qing1ORCID,Wang Lei1ORCID

Affiliation:

1. Institute of Pediatrics, Children’s Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China

2. Reproductive Center, Northwest Women’s and Children’s Hospital, Xi'an, Shaanxi, China

3. Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China

4. NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China

Abstract

Abstract STUDY QUESTION Are mutations in MOS (MOS proto-oncogene, serine/threonine kinase) involved in early embryonic arrest in infertile women? SUMMARY ANSWER We identified mutations in MOS that may cause human female infertility characterized by preimplantation embryonic arrest (PREMBA), and the effects of the mutations in human embryonic kidney 293T (HEK293T cells) and mouse oocytes provided evidence for a causal relation between MOS and female infertility. WHAT IS KNOWN ALREADY MOS, an activator of mitogen-activated protein kinase, mediates germinal vesicle breakdown and metaphase II arrest. Female MOS knockout mice are viable but sterile. Thus, MOS seems to be an important part of the mammalian cell cycle mechanism that regulates female meiosis. STUDY DESIGN, SIZE, DURATION Whole-exome sequencing, bioinformatics filtering analysis and genetic analysis were performed to identify two different biallelic mutations in MOS in two independent families. The infertile patients presenting with early embryonic arrest were recruited from October 2018 to June 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS The female patients diagnosed with primary infertility were recruited from the reproduction centres of local hospitals. Genomic DNA from the affected individuals, their family members and healthy controls was extracted from peripheral blood. We performed whole-exome sequencing in patients diagnosed with PREMBA. Functional effects of the mutations were investigated in HEK293T cells by western blotting and in mouse oocytes by microinjection and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE We identified the homozygous missense mutation c.285C>A (p.(Asn95Lys)) and the compound heterozygous mutations c.467delG (p.(Gly156Alafs*18)) and c.956G>A (p.(Arg319His)) in MOS in two independent patients. The mutations c.285C>A (p.(Asn95Lys)) and c.467delG (p.(Gly156Alafs*18)) reduced the protein level of MOS, and all mutations reduced the ability of MOS to phosphorylate its downstream target, extracellular signal-regulated kinase1/2. In addition, the identified mutations reduced the capacity of exogenous human MOS to rescue the metaphase II exit phenotype, and the F-actin cytoskeleton of mouse oocytes was affected by the patient-derived mutations. LIMITATIONS, REASONS FOR CAUTION Owing to the lack of in vivo data from patient oocytes, the exact molecular mechanism affected by MOS mutations and leading to PREMBA is still unknown and should be further investigated using knock-out or knock-in mice. WIDER IMPLICATIONS OF THE FINDINGS We identified recessive mutations in MOS in two independent patients with the PREMBA phenotype. Our findings reveal the important role of MOS during human oocyte meiosis and embryonic development and suggest that mutations in MOS may be precise diagnostic markers for clinical genetic counselling. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China (81725006, 81822019, 81771581, 81971450, 81971382,82001538 and 82071642), the project supported by the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), the Project of the Shanghai Municipal Science and Technology Commission (19JC1411001), the Natural Science Foundation of Shanghai (19ZR1444500 and 21ZR1404800), the Shuguang Program of the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (18SG03), the Foundation of the Shanghai Health and Family Planning Commission (20154Y0162), the Capacity Building Planning Program for Shanghai Women and Children’s Health Service and the collaborative innovation centre project construction for Shanghai Women and Children’s Health. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.

Funder

National Natural Science Foundation of China

Shanghai Municipal Science and Technology Major Project

Project of the Shanghai Municipal Science and Technology Commission

Natural Science Foundation of Shanghai

Shuguang Program of the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission

Foundation of the Shanghai Health and Family Planning Commission

Capacity Building Planning Program for Shanghai Women

Children’s Health Service

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3