Human blastocysts uptake extracellular vesicles secreted by endometrial cells containing miRNAs related to implantation

Author:

Segura-Benítez Marina12,Bas-Rivas Alba1,Juárez-Barber Elena1,Carbajo-García María Cristina12,Faus Amparo1,De Los Santos María José13,Pellicer Antonio14ORCID,Ferrero Hortensia1ORCID

Affiliation:

1. Fundación IVI, Instituto de Investigación Sanitaria La Fe , Valencia, Spain

2. Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia , Valencia, Spain

3. IVIRMA Valencia , Valencia, Spain

4. IVIRMA Rome , Rome, Italy

Abstract

Abstract STUDY QUESTION Are the extracellular vesicles (EVs) secreted by the maternal endometrium uptaken by human embryos and is their miRNA cargo involved in implantation and embryo development? SUMMARY ANSWER Data suggest that EVs secreted by human endometrial epithelial cells are internalized by human blastocysts, and transport miRNAs to modulate biological processes related to implantation events and early embryo development. WHAT IS KNOWN ALREADY Successful implantation is dependent on coordination between maternal endometrium and embryo, and EVs role in the required cell-to-cell crosstalk has recently been established. In this regard, our group previously showed that protein cargo of EVs secreted by primary human endometrial epithelial cells (pHEECs) is implicated in biological processes related to endometrial receptivity, embryo implantation, and early embryo development. However, little is known about the regulation of these biological processes through EVs secreted by the endometrium at a transcriptomic level. STUDY DESIGN, SIZE, DURATION A prospective descriptive study was performed. Endometrial biopsies were collected from healthy oocyte donors with confirmed fertility on the day of oocyte retrieval, 36 h after the LH surge. pHEECs were isolated from endometrial biopsies (n = 8 in each pool) and cultured in vitro. Subsequently, conditioned medium was collected and EVs were isolated and characterized. Uptake of EVs by human blastocysts and miRNA cargo of these EVs (n = 3 pools) was analyzed. PARTICIPANTS/MATERIALS, SETTING, METHODS EVs were isolated from the conditioned culture media using ultracentrifugation, and characterization was performed using western blotting, nanoparticle tracking analysis, and transmission electron microscopy. EVs were fluorescently labeled with Bodipy-TR ceramide, and their uptake by human blastocysts was analyzed using confocal microscopy. Analysis of the miRNA cargo of EVs was performed using miRNA sequencing, target genes of the most expressed miRNA were annotated, and functional enrichment analysis was performed. MAIN RESULTS AND THE ROLE OF CHANCE EVs measured 100–300 nm in diameter, a concentration of 1.78 × 1011 ± 4.12 × 1010 (SD) particles/ml and expressed intraluminal protein markers Heat shock protein 70 (HSP70) and Tumor Susceptibility Gene 101 (TSG101), in addition to CD9 and CD81 transmembrane proteins. Human blastocysts efficiently internalized fluorescent EVs within 1–2 h, and more pronounced internalization was observed in the hatched pole of the embryos. miRNA-seq analysis featured 149 annotated miRNAs, of which 37 were deemed most relevant. The latter had 6592 reported gene targets, that in turn, have functional implications in several processes related to embryo development, oxygen metabolism, cell cycle, cell differentiation, apoptosis, metabolism, cellular organization, and gene expression. Among the relevant miRNAs contained in these EVs, we highlight hsa-miR-92a-3p, hsa-let-7b-5p, hsa-miR-30a-5p, hsa-miR-24-3p, hsa-miR-21-5p, and hsa-let-7a-5p as master regulators of the biological processes. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study in which conditions of endometrial cell culture could not mimic the intrauterine environment. WIDER IMPLICATIONS OF THE FINDINGS This study defines potential biomarkers of endometrial receptivity and embryo competence that could be useful diagnostic and therapeutic targets for implantation success, as well as open insight further investigations to elucidate the molecular mechanisms implicated in a successful implantation. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Spanish Ministry of Education through FPU awarded to M.S.-B. (FPU18/03735), the Health Institute Carlos III awarded to E.J.-B. (FI19/00110) and awarded to H.F. by the Miguel Servet Program ‘Fondo Social Europeo «El FSE invierte en tu futuro»’ (CP20/00120), and Generalitat Valenciana through VALi+d Programme awarded to M.C.C.-G. (ACIF/2019/139). The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.

Funder

Spanish Ministry of Education

Health Institute Carlos III

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3