Two waves of transcriptomic changes in periovulatory human granulosa cells

Author:

Poulsen L C1,Bøtkjær J A2,Østrup O3,Petersen K B1,Andersen C Yding2,Grøndahl M L4,Englund A L M1

Affiliation:

1. Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark

2. Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark

3. Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark

4. Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark

Abstract

Abstract STUDY QUESTION How does the human granulosa cell (GC) transcriptome change during ovulation? SUMMARY ANSWER Two transcriptional peaks were observed at 12 h and at 36 h after induction of ovulation, both dominated by genes and pathways known from the inflammatory system. WHAT IS KNOWN ALREADY The crosstalk between GCs and the oocyte, which is essential for ovulation and oocyte maturation, can be assessed through transcriptomic profiling of GCs. Detailed transcriptional changes during ovulation have not previously been assessed in humans. STUDY DESIGN, SIZE, DURATION This prospective cohort study comprised 50 women undergoing fertility treatment in a standard antagonist protocol at a university hospital-affiliated fertility clinic in 2016–2018. PARTICIPANTS/MATERIALS, SETTING, METHODS From each woman, one sample of GCs was collected by transvaginal ultrasound-guided follicle aspiration either before or 12 h, 17 h or 32 h after ovulation induction (OI). A second sample was collected at oocyte retrieval, 36 h after OI. Total RNA was isolated from GCs and analyzed by microarray. Gene expression differences between the five time points were assessed by ANOVA with a random factor accounting for the pairing of samples, and seven clusters of protein-coding genes representing distinct expression profiles were identified. These were used as input for subsequent bioinformatic analyses to identify enriched pathways and suggest upstream regulators. Subsets of genes were assessed to explore specific ovulatory functions. MAIN RESULTS AND THE ROLE OF CHANCE We identified 13 345 differentially expressed transcripts across the five time points (false discovery rate, <0.01) of which 58% were protein-coding genes. Two clusters of mainly downregulated genes represented cell cycle pathways and DNA repair. Upregulated genes showed one peak at 12 h that resembled the initiation of an inflammatory response, and one peak at 36 h that resembled the effector functions of inflammation such as vasodilation, angiogenesis, coagulation, chemotaxis and tissue remodelling. Genes involved in cell–matrix interactions as a part of cytoskeletal rearrangement and cell motility were also upregulated at 36 h. Predicted activated upstream regulators of ovulation included FSH, LH, transforming growth factor B1, tumour necrosis factor, nuclear factor kappa-light-chain-enhancer of activated B cells, coagulation factor 2, fibroblast growth factor 2, interleukin 1 and cortisol, among others. The results confirmed early regulation of several previously described factors in a cascade inducing meiotic resumption and suggested new factors involved in cumulus expansion and follicle rupture through co-regulation with previously described factors. LARGE SCALE DATA The microarray data were deposited to the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/gds/, accession number: GSE133868). LIMITATIONS, REASONS FOR CAUTION The study included women undergoing ovarian stimulation and the findings may therefore differ from a natural cycle. However, the results confirm significant regulation of many well-established ovulatory genes from a series of previous studies such as amphiregulin, epiregulin, tumour necrosis factor alfa induced protein 6, tissue inhibitor of metallopeptidases 1 and plasminogen activator inhibitor 1, which support the relevance of the results. WIDER IMPLICATIONS OF THE FINDINGS The study increases our understanding of human ovarian function during ovulation, and the publicly available dataset is a valuable resource for future investigations. Suggested upstream regulators and highly differentially expressed genes may be potential pharmaceutical targets in fertility treatment and gynaecology. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by EU Interreg ÔKS V through ReproUnion (www.reprounion.eu) and by a grant from the Region Zealand Research Foundation. None of the authors have any conflicts of interest to declare.

Funder

Region Zealand Research Foundation

Interreg V ÔKS

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3