Effects of SARS-COV-2 infection during the frozen–thawed embryo transfer cycle on embryo implantation and pregnancy outcomes

Author:

Lu Yao12ORCID,He Yaqiong12,Wang Yuan12,Zhu Qinling12,Qi Jia12,Li Xinyu12,Ding Ying12,Huang Jiaan12,Ding Ziyin12,Xu Yurui12,Yang Yanan12,Lindheim Steven R123,Wei Zhe12,Sun Yun124ORCID

Affiliation:

1. Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China

2. Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai, China

3. Department of Obstetrics and Gynecology, Baylor Scott & White , Temple, TX, USA

4. Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital , Shanghai, China

Abstract

Abstract STUDY QUESTION Does severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the frozen–thawed embryo transfer (FET) cycle affect embryo implantation and pregnancy rates? SUMMARY ANSWER There is no evidence that SARS-CoV-2 infection of women during the FET cycle negatively affects embryo implantation and pregnancy rates. WHAT IS KNOWN ALREADY Coronavirus disease 2019 (COVID-19), as a multi-systemic disease, poses a threat to reproductive health. However, the effects of SARS-CoV-2 infection on embryo implantation and pregnancy following fertility treatments, particularly FET, remain largely unknown. STUDY DESIGN, SIZE, DURATION This retrospective cohort study, included women who underwent FET cycles between 1 November 2022 and 31 December 2022 at an academic fertility centre. PARTICIPANTS/MATERIALS, SETTING, METHODS Women who tested positive for SARS-CoV-2 during their FET cycles were included in the COVID-19 group, while those who tested negative during the same study period were included in the non-COVID-19 group. The primary outcome was ongoing pregnancy rate. Secondary outcomes included rates of implantation, biochemical pregnancy, clinical pregnancy, early pregnancy loss, and ongoing pregnancy. Multivariate logistic regression models were applied to adjust for potential confounders including age, body mass index, gravidity, vaccination status, and endometrial preparation regimen. Subgroup analyses were conducted by time of infection with respect to transfer (prior to transfer, 1–7 days after transfer, or 8–14 days after transfer) and by level of fever (no fever, fever <39°C, or fever ≥39°C). MAIN RESULTS AND THE ROLE OF CHANCE A total of 243 and 305 women were included in the COVID-19 and non-COVID-19 group, respectively. The rates of biochemical pregnancy (58.8% vs 62.0%, P = 0.46), clinical pregnancy (53.1% vs 54.4%, P = 0.76), implantation (46.4% vs 46.2%, P = 0.95), early pregnancy loss (24.5% vs 26.5%, P = 0.68), and ongoing pregnancy (44.4% vs 45.6%, P = 0.79) were all comparable between groups with or without infection. Results of logistic regression models, both before and after adjustment, revealed no associations between SARS-CoV-2 infection and rates of biochemical pregnancy, clinical pregnancy, early pregnancy loss, or ongoing pregnancy. Moreover, neither the time of infection with respect to transfer (prior to transfer, 1–7 days after transfer, or 8–14 days after transfer) nor the level of fever (no fever, fever <39°C, or fever ≥39°C) was found to be related to pregnancy rates. LIMITATIONS, REASONS FOR CAUTION The retrospective nature of the study is subject to possible selection bias. Additionally, although the sample size was relatively large for the COVID-19 group, the sample sizes for certain subgroups were relatively small and lacked adequate power, so these results should be interpreted with caution. WIDER IMPLICATIONS OF THE FINDINGS The study findings suggest that SARS-CoV-2 infection during the FET cycle in females does not affect embryo implantation and pregnancy rates including biochemical pregnancy, clinical pregnancy, early pregnancy loss, and ongoing pregnancy, indicating that cycle cancellation due to SARS-CoV-2 infection may not be necessary. Further studies are warranted to verify these findings. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Key Research and Development Program of China (2023YFC2705500, 2019YFA0802604), National Natural Science Foundation of China (82130046, 82101747), Shanghai leading talent program, Innovative research team of high-level local universities in Shanghai (SHSMU-ZLCX20210201, SHSMU-ZLCX20210200, SSMU-ZLCX20180401), Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital Clinical Research Innovation Cultivation Fund Program (RJPY-DZX-003), Science and Technology Commission of Shanghai Municipality (23Y11901400), Shanghai Sailing Program (21YF1425000), Shanghai’s Top Priority Research Center Construction Project (2023ZZ02002), Three-Year Action Plan for Strengthening the Construction of the Public Health System in Shanghai (GWVI-11.1-36), and Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20161413). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3