Candidate genes for polycystic ovary syndrome are regulated by TGFβ in the bovine foetal ovary

Author:

Azumah Rafiatu1ORCID,Liu Menghe1ORCID,Hummitzsch Katja1ORCID,Bastian Nicole A1,Hartanti Monica D12ORCID,Irving-Rodgers Helen F13,Anderson Richard A4ORCID,Rodgers Raymond J1ORCID

Affiliation:

1. Robinson Research Institute, School of Biomedicine, The University of Adelaide , Adelaide, SA, Australia

2. Faculty of Medicine, Universitas Trisakti , Jakarta, Indonesia

3. School of Medical Science, Griffith University, Gold Coast Campus , Southport, QLD, Australia

4. MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh , Edinburgh, UK

Abstract

Abstract STUDY QUESTION Could changes in transforming growth factor β (TGFβ) signalling during foetal ovary development alter the expression of polycystic ovary syndrome (PCOS) candidate genes leading to a predisposition to PCOS? SUMMARY ANSWER TGFβ signalling molecules are dynamically expressed during foetal ovary development and TGFβ1 inhibits expression of the androgen receptor (AR) and 7 (INSR, C8H9orf3, RAD50, ERBB3, NEIL2, IRF1 and ZBTB16) of the 25 PCOS candidate genes in foetal ovarian fibroblasts in vitro, whilst increasing expression of the AR cofactor TGFβ-induced transcript 1 (TGFB1I1 or Hic5). WHAT IS KNOWN ALREADY The ovarian stroma arises from the mesonephros during foetal ovary development. Changes in the morphology of the ovarian stroma are cardinal features of PCOS. The ovary is more fibrous and has more tunica and cortical and subcortical stroma. It is not known why this is and when this arises. PCOS has a foetal origin and perhaps ovarian stroma development is altered during foetal life to determine the formation of a polycystic ovary later in life. PCOS also has a genetic origin with 19 loci containing 25 PCOS candidate genes. In many adult tissues, TGFβ is known to stimulate fibroblast replication and collagen deposition in stroma, though it has the opposite effect in the non-scaring foetal tissues. Our previous studies showed that TGFβ signalling molecules [TGFβs and their receptors, latent TGFβ binding proteins (LTBPs) and fibrillins, which are extracellular matrix proteins that bind LTBPs] are expressed in foetal ovaries. Also, we previously showed that TGFβ1 inhibited expression of AR and 3 PCOS candidate genes (INSR, C8H9orf3 and RAD50) and stimulated expression of TGFB1I1 in cultured foetal ovarian fibroblasts. STUDY DESIGN, SIZE, DURATION We used Bos taurus for this study as we can ethically collect foetal ovaries from across the full 9-month gestational period. Foetal ovaries (62–276 days, n = 19) from across gestation were collected from pregnant B. taurus cows for RNA-sequencing (RNA-seq) analyses. Foetal ovaries from B. taurus cows were collected (160–198 days, n = 6) for culture of ovarian fibroblasts. PARTICIPANTS/MATERIALS, SETTING, METHODS RNA-seq transcriptome profiling was performed on foetal ovaries and the data on genes involved in TGFβ signalling were extracted. Cells were dispersed from foetal ovaries and fibroblasts cultured and treated with TGFβ1. The effects of TGFβ regulation on the remaining eight PCOS candidate genes not previously studied (ERBB3, MAPRE1, FDFT1, NEIL2, ARL14EP, PLGRKT, IRF1 and ZBTB16) were examined. MAIN RESULTS AND THE ROLE OF CHANCE Many TGFβ signalling molecules are expressed in the foetal ovary, and for most, their expression levels increased accross gestation (LTBP1/2/3/4, FBN1, TGFB2/3, TGFBR2/3 and TGFB1I1), while a few decreased (FBN3, TGFBR3L, TGFBI and TGFB1) and others remained relatively constant (TGFBRAP1, TGFBR1 and FBN2). TGFβ1 significantly decreased expression of PCOS candidate genes ERBB3, NEIL2, IRF1 and ZBTB16 in cultured foetal ovarian fibroblasts. LARGE SCALE DATA The FASTQ files, normalized data and experimental information have been deposited in the Gene Expression Omnibus (GEO) accessible by accession number GSE178450. LIMITATIONS, REASONS FOR CAUTION Regulation of PCOS candidate genes by TGFβ was carried out in vitro and further studies in vivo are required. This study was carried out in bovine where foetal ovaries from across all of the 9-month gestational period were available, unlike in the human where it is not ethically possible to obtain ovaries from the second half of gestation. WIDER IMPLICATIONS OF THE FINDINGS From our current and previous results we speculate that inhibition of TGFβ signalling in the foetal ovary is likely to (i) increase androgen sensitivity by enhancing expression of AR, (ii) increase stromal activity by stimulating expression of COL1A1 and COL3A1 and (iii) increase the expression of 7 of the 25 PCOS candidate genes. Thus inhibition of TGFβ signalling could be part of the aetiology of PCOS or at least the aetiology of polycystic ovaries. STUDY FUNDING/COMPETING INTEREST(S) Funding was received from Adelaide University China Fee Scholarship (M.L.), Australian Research Training Program (R.A.) and the Faculty of Health and Medical Science Divisional Scholarship (R.A.), Adelaide Graduate Research Scholarships (R.A. and N.A.B.), Australia Awards Scholarship (M.D.H.), Robinson Research Institute Career Development Fellowship (K.H.) and Building On Ideas Grant (K.H.), National Health and Medical Research Council of Australia Centre for Research Excellence in the Evaluation, Management and Health Care Needs of Polycystic Ovary Syndrome (N.A.B., M.D.H. and R.J.R.; GTN1078444) and the Centre for Research Excellence on Women’s Health in Reproductive life (R.A., R.J.R. and K.H.; GTN1171592) and the UK Medical Research Council (R.A.A.; grant no. G1100357). The funders did not play any role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors of this manuscript have nothing to declare and no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funder

Adelaide University China Fee Scholarship

Australian Research Training Program

Faculty of Health and Medical Science Divisional Scholarship

Adelaide Graduate Research Scholarships

Australia Awards Scholarship

Robinson Research Institute Career Development Fellowship

Building On Ideas Grant

National Health and Medical Research Council of Australia Centre for Research Excellence in the Evaluation, Management and Health Care Needs of Polycystic Ovary Syndrome

Centre for Research Excellence on Women’s Health in Reproductive life

UK Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

Reference76 articles.

1. Androgen signaling pathways driving reproductive and metabolic phenotypes in a PCOS mouse model;Aflatounian;J Endocrinol,2020

2. Polycystic ovary syndrome;Azziz;Nat Rev Dis Primers,2016

3. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women;Barnes;J Clin Endocrinol Metab,1994

4. NCBI GEO: archive for high-throughput functional genomic data;Barrett;Nucleic Acids Res,2009

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3