Predictive models of pregnancy based on data from a preconception cohort study

Author:

Yland Jennifer J1ORCID,Wang Taiyao23,Zad Zahra24,Willis Sydney K1ORCID,Wang Tanran R1,Wesselink Amelia K1ORCID,Jiang Tammy1,Hatch Elizabeth E1,Wise Lauren A1,Paschalidis Ioannis Ch245

Affiliation:

1. Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA

2. Center for Information and Systems Engineering, Boston University, Boston, MA, USA

3. Philips Research North America, Cambridge, MA, USA

4. Division of Systems Engineering, Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA

5. Department of Biomedical Engineering, Boston University, Boston, MA, USA

Abstract

Abstract STUDY QUESTION Can we derive adequate models to predict the probability of conception among couples actively trying to conceive? SUMMARY ANSWER Leveraging data collected from female participants in a North American preconception cohort study, we developed models to predict pregnancy with performance of ∼70% in the area under the receiver operating characteristic curve (AUC). WHAT IS KNOWN ALREADY Earlier work has focused primarily on identifying individual risk factors for infertility. Several predictive models have been developed in subfertile populations, with relatively low discrimination (AUC: 59–64%). STUDY DESIGN, SIZE, DURATION Study participants were female, aged 21–45 years, residents of the USA or Canada, not using fertility treatment, and actively trying to conceive at enrollment (2013–2019). Participants completed a baseline questionnaire at enrollment and follow-up questionnaires every 2 months for up to 12 months or until conception. We used data from 4133 participants with no more than one menstrual cycle of pregnancy attempt at study entry. PARTICIPANTS/MATERIALS, SETTING, METHODS On the baseline questionnaire, participants reported data on sociodemographic factors, lifestyle and behavioral factors, diet quality, medical history and selected male partner characteristics. A total of 163 predictors were considered in this study. We implemented regularized logistic regression, support vector machines, neural networks and gradient boosted decision trees to derive models predicting the probability of pregnancy: (i) within fewer than 12 menstrual cycles of pregnancy attempt time (Model I), and (ii) within 6 menstrual cycles of pregnancy attempt time (Model II). Cox models were used to predict the probability of pregnancy within each menstrual cycle for up to 12 cycles of follow-up (Model III). We assessed model performance using the AUC and the weighted-F1 score for Models I and II, and the concordance index for Model III. MAIN RESULTS AND THE ROLE OF CHANCE Model I and II AUCs were 70% and 66%, respectively, in parsimonious models, and the concordance index for Model III was 63%. The predictors that were positively associated with pregnancy in all models were: having previously breastfed an infant and using multivitamins or folic acid supplements. The predictors that were inversely associated with pregnancy in all models were: female age, female BMI and history of infertility. Among nulligravid women with no history of infertility, the most important predictors were: female age, female BMI, male BMI, use of a fertility app, attempt time at study entry and perceived stress. LIMITATIONS, REASONS FOR CAUTION Reliance on self-reported predictor data could have introduced misclassification, which would likely be non-differential with respect to the pregnancy outcome given the prospective design. In addition, we cannot be certain that all relevant predictor variables were considered. Finally, though we validated the models using split-sample replication techniques, we did not conduct an external validation study. WIDER IMPLICATIONS OF THE FINDINGS Given a wide range of predictor data, machine learning algorithms can be leveraged to analyze epidemiologic data and predict the probability of conception with discrimination that exceeds earlier work. STUDY FUNDING/COMPETING INTEREST(S) The research was partially supported by the U.S. National Science Foundation (under grants DMS-1664644, CNS-1645681 and IIS-1914792) and the National Institutes for Health (under grants R01 GM135930 and UL54 TR004130). In the last 3 years, L.A.W. has received in-kind donations for primary data collection in PRESTO from FertilityFriend.com, Kindara.com, Sandstone Diagnostics and Swiss Precision Diagnostics. L.A.W. also serves as a fibroid consultant to AbbVie, Inc. The other authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.

Funder

U.S. National Science Foundation

National Institutes of Health

Clinical & Translational Science Institute at Boston University

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3