Novel insights into reproductive ageing and menopause from genomics

Author:

Das Arunika12ORCID,Destouni Aspasia3ORCID

Affiliation:

1. Department of Biology, University of Pennsylvania , Philadelphia, Pennsylvania, USA

2. Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania, USA

3. Laboratory of Cytogenetics and Molecular Genetics, School of Health Sciences, Faculty of Medicine, University of Thessaly , Larissa, Greece

Abstract

ABSTRACT The post-reproductive phase or menopause in females is triggered by a physiological timer that depends on a threshold of follicle number in the ovary. Curiously, reproductive senescence appears to be decoupled from chronological age and is instead thought to be a function of physiological ageing. Ovarian ageing is associated with a decrease in oocyte developmental competence, attributed to a concomitant increase in meiotic errors. Although many biological hallmarks of general ageing are well characterized, the precise mechanisms underlying the programmed ageing of the female reproductive system remain elusive. In particular, the molecular pathways linking the external menopause trigger to the internal oocyte chromosome segregation machinery that controls fertility outcomes is unclear. However, recent large scale genomics studies have begun to provide insights into this process. Next-generation sequencing integrated with systems biology offers the advantage of sampling large datasets to uncover molecular pathways associated with a phenotype such as ageing. In this mini-review, we discuss findings from these studies that are crucial for advancing female reproductive senescence research. Targets identified in these studies can inform future animal models for menopause. We present three potential hypotheses for how external pathways governing ovarian ageing can influence meiotic chromosome segregation, with evidence from both animal models and molecular targets revealed from genomics studies. Although still in incipient stages, we discuss the potential of genomics studies combined with epigenetic age acceleration models for providing a predictive toolkit of biomarkers controlling menopause onset in women. We also speculate on future research directions to investigate extending female reproductive lifespan, such as comparative genomics in model systems that lack menopause. Novel genomics insights from such organisms are predicted to provide clues to preserving female fertility.

Funder

iStemTheOS

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3