Initial steps in reconstruction of the human ovary: survival of pre-antral stage follicles in a decellularized human ovarian scaffold

Author:

Pors S E1,Ramløse M1,Nikiforov D12,Lundsgaard K1,Cheng J13,Andersen C Yding1,Kristensen S G1

Affiliation:

1. Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark

2. University of Teramo, Teramo, Via Renato Balzarini, Italy

3. People’s Hospital of Guangxi Autonomous Region, 6 Taoyuan Rd, Qingxiu Qu, Nanning City, Guangxi province, China Via Renato Balzarini, Teramo

Abstract

Abstract STUDY QUESTION Can a reconstructed ovary using decellularized human ovarian tissue (DCT) support survival of pre-antral stage follicles? SUMMARY ANSWER We have demonstrated an effective protocol for decellularization of human ovarian tissues and successful recellularization with isolated human ovarian cells and pre-antral follicles. WHAT IS KNOWN ALREADY Survivors of leukemia or ovarian cancer run a risk of reintroducing malignancy when cryopreserved ovarian tissue is transplanted to restore fertility. A reconstructed ovary free of malignant cells could provide a safe alternative. Decellularization of ovarian tissue removes all cells from the extracellular matrix (ECM) including possible malignancies and leaves behind a physiological scaffold. The ECM offers the complex milieu that facilitates the necessary interaction between ovarian follicles and their surroundings to ensure their growth and development. Previous studies have shown that decellularized bovine ovarian scaffolds supported murine follicle growth and restoration of ovarian function in ovariectomized mice. STUDY DESIGN, SIZE, DURATION Optimizing a decellularization protocol for human ovarian tissues and testing biofunctionality of the decellularized scaffolds in vitro and in vivo by reseeding with both murine and human pre-antral follicles and ovarian cells. PARTICIPANTS/MATERIALS, SETTING, METHODS Donated human ovarian tissue and isolated pre-antral follicles were obtained from women undergoing ovarian tissue cryopreservation for fertility preservation. Ovarian cortical and medullary tissues were decellularized using 0.1% sodium dodecyl sulfate (SDS) for 3, 6, 18 and 24 hours followed by 24 hours of 1 mg/mL DNase treatment and washing. Decellularization of ovarian tissues and preservation of ECM were characterized by morphological evaluation using Periodic Acid–Schiff (PAS) staining, DNA quantification, histochemical quantification of collagen content and immunofluorescence analysis for collagen IA, laminin, fibronectin and DNA. Human ovarian stromal cells and isolated human pre-antral follicles were reseeded on the DCT and cultured in vitro. Isolated murine (N = 241) and human (N = 20) pre-antral follicles were reseeded on decellularized scaffolds and grafted subcutaneously to immunodeficient mice for 3 weeks. MAIN RESULTS AND THE ROLE OF CHANCE Incubation in 0.1% SDS for 18–24 hours adequately decellularized both human ovarian medullary and cortical tissue by eliminating all cells and leaving the ECM intact. DNA content in DCT was decreased by >90% compared to native tissue samples. Histological examination using PAS staining confirmed that the cortical and medullary tissues were completely decellularized, and no visible nuclear material was found within the decellularized sections. DCT also stained positive for collagen I and collagen quantities in DCT constituted 88–98% of the individual baselines for native samples. Human ovarian stroma cells were able to recellularize the DCT and isolated human pre-antral follicles remained viable in co-culture. Xenotransplantation of DCT reseeded with human or murine pre-antral follicles showed, that the DCT was able to support survival of human follicles and growth of murine follicles, of which 39% grew to antral stages. The follicular recovery rates after three weeks grafting were low but similar for both human (25%) and murine follicles (21%). LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION Further studies are needed to increase recovery and survival of the reseeded follicles. Longer grafting periods should be evaluated to determine the developmental potential of human follicles. Survival of the follicles might be impaired by the lack of stroma cells. WIDER IMPLICATIONS OF THE FINDINGS This is the first time that isolated human follicles have survived in a decellularized human scaffold. Therefore, this proof-of-concept could be a potential new strategy to eliminate the risk of malignant cell re-occurrence in former cancer patients having cryopreserved ovarian tissue transplanted for fertility restoration. STUDY FUNDING/COMPETING INTEREST(S) This study is part of the ReproUnion collaborative study, co-financed by the European Union, Interreg V ÖKS. Furthermore, Project ITN REP-BIOTECH 675526 funded by the European Union, European Joint Doctorate in Biology and Technology of the Reproductive Health, the Research Pools of Rigshospitalet, the Danish Cancer Foundation and Dagmar Marshalls Foundation are thanked for having funded this study. The funders had no role in the study design, data collection and interpretation, or in the decision to submit the work for publication.

Funder

European Union

Institute for Translational Neuroscience

Dagmar Marshalls Foundation

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3