IQUB deficiency causes male infertility by affecting the activity of p-ERK1/2/RSPH3

Author:

Zhang Zhihua1ORCID,Zhou Hongbin1,Deng Xujing2,Zhang Ruixiu2,Qu Ronggui1,Mu Jian1,Liu Ruyi1ORCID,Zeng Yang1,Chen Biaobang3ORCID,Wang Lei14ORCID,Sang Qing14ORCID,Bao Shihua2ORCID

Affiliation:

1. The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, School of Life Sciences and Huadong Hospital, Fudan University , Shanghai, China

2. Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University , Shanghai, China

3. NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University , Shanghai, China

4. Zhuhai Fudan Innovation Institute , Zhuhai, China

Abstract

Abstract STUDY QUESTION Can new genetic factors responsible for male infertility be identified, especially for those characterized by asthenospermia despite normal sperm morphology? SUMMARY ANSWER We identified the novel pathogenetic gene IQ motif and ubiquitin-like domain-containing (IQUB) as responsible for male infertility characterized by asthenospermia, involving sperm radial spoke defects. WHAT IS KNOWN ALREADY To date, only a few genes have been found to be responsible for asthenospermia with normal sperm morphology. Iqub, encoding the IQUB protein, is highly and specifically expressed in murine testes and interacts with the proteins radial spoke head 3 (RSPH3), CEP295 N-terminal like (CEP295NL or DDC8), glutathione S-transferase mu 1 (GSTM1) and outer dense fiber of sperm tails 1 (ODF1) in the yeast two-hybrid system. STUDY DESIGN, SIZE, DURATION The IQUB variant was identified by whole-exome sequencing in a cohort of 126 male infertility patients with typical asthenospermia recruited between 2015 and 2020. Knockout (KO) and knockin (KI) mouse models, scanning and transmission electron microscopy (TEM), and other functional assays were performed, between 2019 and 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS The IQUB variant was identified by whole-exome sequencing and confirmed by Sanger sequencing. Iqub KO and KI mice were constructed to mimic the phenotype of the affected individual. After recapitulating the phenotype of human male infertility, scanning and TEM were performed to check the ultrastructure of the sperm. Western blot and co-immunoprecipitation were performed to clarify the pathological mechanism of the IQUB variant. MAIN RESULTS AND THE ROLE OF CHANCE We identified a homozygous nonsense IQUB variant (NM_001282855.2:c.942T> G(p.Tyr314*)) from an infertile male. Iqub KO and KI mice mimicked the infertility phenotype and confirmed IQUB to be the pathogenetic gene. Scanning and TEM showed that sperm of both the mouse models and the affected individual had radial spoke defects. The functional assay suggested that IQUB may recruit calmodulin in lower Ca2+ environments to facilitate the normal assembly of radial spokes by inhibiting the activity of RSPH3/p-ERK1/2 (a nontypical AKAP (A-Kinase Anchoring Protein) forming by RSPH3 and phosphorylation of extracellular signal-regulated kinase 1 and 2 (p-ERK1/2)). LIMITATIONS, REASONS FOR CAUTION Additional cases are needed to confirm the genetic contribution of IQUB variants to male infertility. In addition, because no IQUB antibody is available for immunofluorescence and the polyclonal antibody we generated was only effective in western blotting, immunostaining for IQUB was not performed in this study. Therefore, this study lacks direct in vivo proof to confirm the effect of the variant on IQUB protein level. WIDER IMPLICATIONS OF THE FINDINGS Our results suggest a causal relation between IQUB variants and male infertility owing to asthenospermia, and partly clarify the pathological mechanism of IQUB variants. This expands our knowledge of the genes involved in human sperm asthenospermia and potentially provides a new genetic marker for male infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research and Development Program of China (2021YFC2700100), the National Natural Science Foundation of China (32130029, 82171643, 81971450, 82001538, and 81971382) and the Guangdong Science and Technology Department Guangdong-Hong Kong-Macao Joint Innovation Project (2020A0505140003). There are no competing interests to declare. TRIAL REGISTRATION NUMBER N/A.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Guangdong Science and Technology Department Guangdong-Hong Kong-Macao Joint Innovation Project

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3