Cytoskeletal and inter-cellular junction remodelling in endometrial organoids under oxygen–glucose deprivation: a new potential pathological mechanism for thin endometria

Author:

Peng TianLiu12345,Yang Shuo12345,Lian Weisi12345,Liu Xiaojuan123456,Zheng Ping123456,Qin Xunsi12345,Liao Baoying12345ORCID,Zhou Ping12345ORCID,Wang Yue12345,Liu Fenting12345,Yang Zi12345ORCID,Ye Zhenhong12345,Shan Hongying12345,Liu Xiyao12345,Yu Yang123456ORCID,Li Rong12345ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital , Beijing, China

2. National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China

3. Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University) , Beijing, China

4. Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology , Beijing, China

5. National Clinical Key Specialty Construction Program , Beijing, China

6. Clinical Stem Cell Research Center, Peking University Third Hospital , Beijing, China

Abstract

Abstract STUDY QUESTION What is the pathological mechanism involved in a thin endometrium, particularly under ischaemic conditions? SUMMARY ANSWER Endometrial dysfunction in patients with thin endometrium primarily results from remodelling in cytoskeletons and cellular junctions of endometrial epithelial cells under ischemic conditions. WHAT IS KNOWN ALREADY A healthy endometrium is essential for successful embryo implantation and subsequent pregnancy; ischemic conditions in a thin endometrium compromise fertility outcomes. STUDY DESIGN, SIZE, DURATION We recruited 10 patients with thin endometrium and 15 patients with healthy endometrium. Doppler ultrasound and immunohistochemical results confirmed the presence of insufficient endometrial blood perfusion in patients with thin endometrium. Organoids were constructed using healthy endometrial tissue and cultured under oxygen–glucose deprivation (OGD) conditions for 24 h. The morphological, transcriptomic, protein expression, and signaling pathway changes in the OGD organoids were observed. These findings were validated in both thin endometrial tissue and healthy endometrial tissue samples. PARTICIPANTS/MATERIALS, SETTING, METHODS Endometrial thickness and blood flow were measured during the late follicular phase using transvaginal Doppler ultrasound. Endometrial tissue was obtained via hysteroscopy. Fresh endometrial tissues were used for the generation and culture of human endometrial organoids. Organoids were cultured in an appropriate medium and subjected to OGD to simulate ischemic conditions. Apoptosis and cell death were assessed using Annexin-V/propidium iodide staining. Immunofluorescence analysis, RNA sequencing, western blotting, simple westerns, immunohistochemistry, and electron microscopy were conducted to evaluate cellular and molecular changes. MAIN RESULTS AND THE ROLE OF CHANCE Patients with thin endometrium showed significantly reduced endometrial thickness and altered blood flow patterns compared to those with healthy endometrium. Immunohistochemical staining revealed fewer CD34-positive blood vessels and glands in the thin endometrium group. Organoids cultured under OGD conditions exhibited significant morphological changes, increased apoptosis, and cell death. RNA-seq identified differentially expressed genes related to cytoskeletal remodeling and stress responses. OGD induced a strong cytoskeletal reorganization, mediated by the RhoA/ROCK signaling pathway. Additionally, electron microscopy indicated compromised epithelial integrity and abnormal cell junctions in thin endometrial tissues. Upregulation of hypoxia markers (HIF-1α and HIF-2α) and activation of the RhoA/ROCK pathway were also observed in thin endometrial tissues, suggesting ischemia and hypoxia as underlying mechanisms. LARGE SCALE DATA none. LIMITATIONS AND REASONS FOR CAUTION The study was conducted in an in vitro model, which may not fully replicate the complexity of in vivo conditions. WIDER IMPLICATIONS OF THE FINDINGS This research provides a new three-dimensional in vitro model of thin endometrium, as well as novel insights into the pathophysiological mechanisms of endometrial ischaemia in thin endometrium, offering potential avenues for identifying therapeutic targets for treating fertility issues related to thin endometrium. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Natural Science Foundation of China (81925013); National Key Research and Development Project of China (2022YFC2702500, 2021YFC2700303, 2021YFC2700601); the Capital Health Research and Development Project (SF2022-1-4092); the National Natural Science Foundation of China (82288102, 81925013, 82225019, 82192873); Special Project on Capital Clinical Diagnosis and Treatment Technology Research and Transformation Application (Z211100002921054); the Frontiers Medical Center, Tianfu Jincheng Laboratory Foundation(TFJC2023010001). The authors declare that no competing interests exist.

Funder

National Natural Science Foundation of China

National Key Research and Development Project of China

Capital Health Research and Development Project

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3