Construction of a competing endogenous RNA network to identify drug targets against polycystic ovary syndrome

Author:

Wu Tong123,Gao Yue-Yue123,Tang Xia-Nan123,Li Yan123,Dai Jun123,Zhou Su123,Wu Meng123,Zhang Jin-Jin123ORCID,Wang Shi-Xuan123ORCID

Affiliation:

1. National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China

2. Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China

3. Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China

Abstract

Abstract STUDY QUESTION Would the construction of a competing endogenous RNA (ceRNA) network help identify new drug targets for the development of potential therapies for polycystic ovary syndrome (PCOS)? SUMMARY ANSWER Both Food and Drug Administartion (FDA)-approved and candidate drugs could be identified by combining bioinformatics approaches with clinical sample analysis based on our established ceRNA network. WHAT IS KNOWN ALREADY Thus far, no effective drugs are available for treating PCOS. ceRNAs play crucial roles in multiple diseases, and some of them are in current use as prognostic biomarkers as well as for chemo-response and drug prediction. STUDY DESIGN, SIZE, DURATION For the bioinformatics part, five microarrays of human granulosa cells were considered eligible after applying strict screening criteria and were used to construct the ceRNA network for target identification. For population-based validation, samples from 24 women with and without PCOS were collected from January 2021 to July 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS The public data included 27 unaffected women and 25 women with PCOS, according to the Rotterdam criteria proposed in 2003. The limma and RobustRankAggreg R packages were used to identify differentially expressed messenger RNAs and noncoding RNAs. Gene Ontology, Reactome and Kyoto Encyclopedia of Genes and Gemomes (KEGG) enrichment analyses were performed. A ceRNA network was constructed by integrating the differentially expressed genes and target genes. The population-based validation included human luteinized granulosa cell samples from 12 unaffected women and 12 women with PCOS. Quantitative real-time polymerase chain reaction was conducted to detect the levels of mRNAs and microRNAs (miRNAs). Connectivity map and computational model algorithms were implemented to predict therapeutic drugs from the ceRNA network. Additionally, we compared the predicted drugs with known clinical medications in DrugBank. MAIN RESULTS AND THE ROLE OF CHANCE A set of 10 mRNAs, 11 miRNAs and 53 long non-coding RNAs (lncRNAs) were differentially expressed. Functional enrichment analysis revealed the highest relevance to immune system-related biological processes and signalling pathways, such as cytokine secretion and leucocyte chemotaxis. A ceRNA consisting of two lncRNAs, two miRNAs and five mRNAs was constructed. Through network construction via bioinformatic analysis, we identified some already approved drugs (such as metformin) that could target some molecules in the network as potential drug candidates for PCOS. LARGE SCALE DATA Public sequencing data were obtained from GSE34526, GSE84376, GSE102293, GSE106724 and GSE114419, which have been deposited in the Gene Expression Omnibus database. LIMITATIONS, REASONS FOR CAUTION Experiments, such as immunoprecipitation, luciferase reporter assays and animal model studies, are needed to validate the potential targets in the ceRNA network before the identified drug candidates can be tested using cellular and animal model systems. WIDER IMPLICATIONS OF THE FINDINGS Our findings provide new bioinformatic insight into the possible pathogenesis of PCOS from ceRNA network analysis, which has not been previously studied in the human reproductive field. Our study also reveals some potential drug candidates for the future development of possible therapies against PCOS. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the National Key Research and Development Program of China (2021YFC2700400) and the National Natural Science Foundation of China (82001498). The authors have no conflicts of interest to disclose.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3