Preclinical workup using long-read amplicon sequencing provides families withde novopathogenic variants access to universal preimplantation genetic testing

Author:

Tsuiko Olga12ORCID,El Ayeb Yasmine1,Jatsenko Tatjana1,Allemeersch Joke2,Melotte Cindy2,Ding Jia2,Debrock Sophie3,Peeraer Karen3,Vanhie Arne3,De Leener Anne4,Pirard Céline5,Kluyskens Candice5,Denayer Ellen2,Legius Eric2,Vermeesch Joris Robert12ORCID,Brems Hilde2ORCID,Dimitriadou Eftychia2ORCID

Affiliation:

1. Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven , Leuven, Belgium

2. Centre for Human Genetics, University Hospitals Leuven , Leuven, Belgium

3. Leuven University Fertility Center, University Hospitals Leuven , Leuven, Belgium

4. Centre for Human Genetics, Cliniques Universitaires Saint Luc, UCLouvain , Brussels, Belgium

5. Department of Gynaecology, Cliniques Universitaires Saint Luc, UCLouvain , Brussels, Belgium

Abstract

AbstractSTUDY QUESTIONCan long-read amplicon sequencing be beneficial for preclinical preimplantation genetic testing (PGT) workup in couples with a de novo pathogenic variant in one of the prospective parents?SUMMARY ANSWERLong-read amplicon sequencing represents a simple, rapid and cost-effective preclinical PGT workup strategy that provides couples with de novo pathogenic variants access to universal genome-wide haplotyping-based PGT programs.WHAT IS KNOWN ALREADYUniversal PGT combines genome-wide haplotyping and copy number profiling to select embryos devoid of both familial pathogenic variants and aneuploidies. However, it cannot be directly applied in couples with a de novo pathogenic variant in one of the partners due to the absence of affected family members required for phasing the disease-associated haplotype.STUDY DESIGN, SIZE, DURATIONThis is a prospective study, which includes 32 families that were enrolled in the universal PGT program at the University Hospital of Leuven between 2018 and 2022. We implemented long-read amplicon sequencing during the preclinical PGT workup to deduce the parental origin of the disease-associated allele in the affected partner, which can then be traced in embryos during clinical universal PGT cycles.PARTICIPANTS/MATERIALS, SETTING, METHODSTo identify the parental origin of the disease-associated allele, genomic DNA from the carrier of the de novo pathogenic variant and his/her parent(s) was used for preclinical PGT workup. Primers flanking the de novo variant upstream and downstream were designed for each family. Following long-range PCR, amplicons that ranged 5–10 kb in size, were sequenced using Pacific Bioscience and/or Oxford Nanopore platforms. Next, targeted variant calling and haplotyping were performed to identify parental informative single-nucleotide variants (iSNVs) linked to the de novo mutation. Following the preclinical PGT workup, universal PGT via genome-wide haplotyping was performed for couples who proceeded with clinical PGT cycle. In parallel, 13 trophectoderm (TE) biopsies from three families that were analyzed by universal PGT, were also used for long-read amplicon sequencing to explore this approach for embryo direct mutation detection coupled with targeted long-read haplotyping.MAIN RESULTS AND THE ROLE OF CHANCEThe parental origin of the mutant allele was identified in 24/32 affected individuals during the preclinical PGT workup stage, resulting in a 75% success rate. On average, 5.95 iSNVs (SD = 4.5) were detected per locus of interest, and the average distance of closest iSNV to the de novo variant was ∼1750 bp. In 75% of those cases (18/24), the de novo mutation occurred on the paternal allele. In the remaining eight families, the risk haplotype could not be established due to the absence of iSNVs linked to the mutation or inability to successfully target the region of interest. During the time of the study, 12/24 successfully analyzed couples entered the universal PGT program, and three disease-free children have been born. In parallel to universal PGT analysis, long-read amplicon sequencing of 13 TE biopsies was also performed, confirming the segregation of parental alleles in the embryo and the results of the universal PGT.LIMITATIONS, REASONS FOR CAUTIONThe main limitation of this approach is that it remains targeted with the need to design locus-specific primers. Because of the restricted size of target amplicons, the region of interest may also remain non-informative in the absence of iSNVs.WIDER IMPLICATIONS OF THE FINDINGSTargeted haplotyping via long-read amplicon sequencing, particularly using Oxford Nanopore Technologies, provides a valuable alternative for couples with de novo pathogenic variants that allows access to universal PGT. Moreover, the same approach can be used for direct mutation analysis in embryos, as a second line confirmation of the preclinical PGT result or as a potential alternative PGT procedure in couples, where additional family members are not available.STUDY FUNDING/COMPETING INTEREST(S)This work was supported by KU Leuven funding (no. C1/018 to J.R.V.) and Fonds Wetenschappelijk Onderzoek (1241121N to O.T.). J.R.V. is co-inventor of a patent ZL910050-PCT/EP2011/060211-WO/2011/157846 ‘Methods for haplotyping single-cells’ and ZL913096-PCT/EP2014/068315-WO/2015/028576 ‘Haplotyping and copy number typing using polymorphic variant allelic frequencies’ licensed to Agilent Technologies. All other authors have no conflict of interest to declare.TRIAL REGISTRATION NUMBERN/A.

Funder

KU Leuven

Fonds Wetenschappelijk Onderzoek

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3