Effect of Temperature on the Survival and Developmental Rate of Immature Ooencyrtus mirus (Hymenoptera: Encyrtidae)

Author:

Power Nancy A1ORCID,Ganjisaffar Fatemeh1,Perring Thomas M1

Affiliation:

1. Department of Entomology, University of California, Riverside, CA

Abstract

Abstract Bagrada hilaris (Burmeister) is an invasive pest of cole crops in the southwestern United States. To find potential biocontrol agents of B. hilaris, three egg parasitoids were imported from Pakistan, including Ooencyrtus mirus, a recently described uniparental species. We investigated the effect of temperature on survival and developmental rate in O. mirus from egg to adult. At 14 and 16°C, no adults emerged unless the immatures were transferred later to a warmer temperature. At constant 18°C, a low percentage emerged, but again more emerged if the immatures were transferred to a warmer temperature. Survival ranged from 80 to 96% at 20–37°C and did not differ significantly among these temperatures. No adults emerged at 38°C. Regardless of the amount of time the parasitized eggs were held at 14 and 16°C, the developmental times after returning the eggs to 26°C were similar, suggesting a quiescence process rather than simply slow development. At higher temperatures, the developmental rate increased linearly from 18 to 36°C and then declined at 37°C. The Wang model provided the best fit of the data and estimated a lower developmental threshold at 13.0°C, an optimal temperature at 35.6°C, and an upper developmental threshold of 38.3°C. The thermal constant for total immature development is 168.4 degree-days. The results show 36°C to be the best temperature for rearing O. mirus, and that O. mirus-parasitized eggs can be stored at 14°C for months without losing viability. These are crucial data to consider when mass rearing this biological control agent.

Funder

California Department of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3