Permethrin Residual Activity Against Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae) Attacks Following Field Aging and Simulated Rainfall Weathering

Author:

Brown Matthew S12,Addesso Karla M1,Baysal-Gurel Fulya1,Youssef Nadeer N1,Oliver Jason B1

Affiliation:

1. Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, McMinnville, TN

2. Department of Plant and Environmental Sciences, Clemson University, Pee Dee Research and Education Center, Florence, SC

Abstract

Abstract Adult ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) bore into ornamental nursery trees resulting in trunk vascular tissue damage, which can potentially kill trees. Ambrosia beetle exposure to surface-applied insecticides is minimal after internal trunk galleries are formed, so effective management requires insecticide treatments to be applied near the time of infestation or to have residual activity on the bark. Tree trunk sections (bolts) were used to determine the effect of field aging or irrigation (i.e., simulated rainfall weathering) on permethrin residual activity against ambrosia beetles. In all experiments, 30-cm-long bolts from Liriodendron tulipifera L. (Magnoliales: Magnoliaceae) were hollowed and filled with 70% ethanol at field deployment to induce ambrosia beetle attacks over a 2-wk period. To evaluate insecticide residual activity, permethrin was sprayed onto tree bolts at 0, 8, 17, or 24 d before ethanol addition, and then bolts were deployed along a wooded border in fall 2017 and spring 2018. Tree bolts with permethrin residues ≤17 d old had significantly fewer ambrosia beetle attacks than bolts with 24-d-old residues or the non-permethrin-treated control bolts. To evaluate simulated rainfall weathering, permethrin was applied to tree bolts 8 or 22 d before ethanol (spring 2018) or 10 or 24 d before ethanol (fall 2018) with half of the bolts receiving regular irrigation events. Irrigation had no significant effect on permethrin residual activity against ambrosia beetles during either test. This study determined ambrosia beetle control was affected by permethrin residue age more than simulated rainfall weathering, and a reapplication interval of ≤17 d maximized beetle control.

Funder

U.S. Department of Agriculture

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3